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The transverse evolution of the envelope of an intense, unbunched ion beam in a periodic, linear
transport channel can be modeled by the Kapchinskij-Vladimirskij (KV) envelope equations. Here
we employ the KV envelope equations to analyze the linear stability properties of so-called mismatch
perturbations about the matched (i.e., periodic) beam envelope in continuous focusing, periodic
solenoidal, and periodic quadrupole transport lattices for a coasting beam. The formulation is
analyzed and new self-consistent KV distributions are derived for an elliptical beam envelope in
a periodic solenoidal transport channel. This derivation identifies appropriate emittance measures
and Larmor frame transformations to allow application of standard form envelope equations to
solenoidal focusing channels. Perturbed envelope equations are derived that include driving sources
of mismatch excitation resulting from focusing errors, particle loss, and beam emittance growth.
These equations are solved analytically for continuous focusing and demonstrate a factor of two
increase in maximum mismatch excursions resulting from sudden driving perturbations relative
to adiabatic driving perturbations. Numerical and analytical studies are carried out to explore
properties of normal mode envelope oscillations without driving excitations in periodic solenoidal
and quadrupole focusing lattices. Previous work on this topic by Struckmeier and Reiser [Part. Accel.
14, 227 (1984)] is extended and clarified. Regions of parametric instability are mapped, new classes
of envelope instabilities are found, parametric sensitivities are explored, general limits and mode
invariants are derived, and analytically accessible limits are checked. Important, and previously
unexplored, launching conditions are described for pure envelope modes in periodic quadrupole
focusing channels.

PACS numbers: 29.27.Bd,41.75.-i,52.59.Sa,52.27.Jt

I. INTRODUCTION

Intense ion beams are usually transported in a periodic lattice of linear focusing elements that radially confine the
beam against defocusing space-charge and thermal forces arising from the distribution of beam particles. Envelope
equations are frequently used to model the low-order, statistical evolution of the beam edge. The KV envelope
equations are coupled ordinary differential equations that describe the transverse evolution of the edge of an unbunched
elliptical beam in a linear focusing lattice consistent with linear space-charge defocusing forces and constant emittances
(i.e, invariant phase space projections)[1–3]. Even though the KV equations are self-consistent only for the singular
and unphysical KV distribution function which has higher-order collective instabilities internal to the beam[4], the
KV equations are valid for general distributions with evolving emittances in a rms equivalent beam sense[2, 5, 6].
Moreover, because space-charge profiles on intense beams tend to be fairly uniform in the core of the beam, the linear
self-fields in the KV model should be accurate at high space-charge intensities except in a thin layer near the beam
edge where the charge-density drops rapidly to zero. Consequently, for intense beams propagating in linear transport
channels without significant particle loss or emittance growth, the KV envelope equations can provide a good estimate
of the actual (rms statistical measure) envelope of the beam. Because of this and the fact that the ordinary differential
equations describing the KV envelope evolution are straightforward to solve numerically, the KV envelope equations
are extensively employed in the design of practical linear transport lattices.

The matched beam envelope is the solution to the KV envelope equations with the periodicity of the focusing
lattice. The matched solution is expected to have smallest maximum radial excursions relative to other possible
envelope evolutions in the lattice and it requires particular initial conditions in the envelope of beam particles.
There will always be some finite mismatch error or deviation of the beam envelope from this matched evolution.

∗smlund@lbl.gov



2

These mismatch errors can be analyzed in terms of the small-amplitude modes about the matched solution that are
supported by the KV envelope equations[2, 7]. Parametric instabilities of the mismatch modes must be avoided for
practical machine operating points to maintain beam control. Even in cases where the envelope is stable, the structure
of the mismatch modes is important. The frequencies of the envelope modes can resonate with lattice structures,
particle orbits, and collective space-charge waves causing deleterious beam effects. For example, the high frequency
breathing envelope mode is well-known to drive large-amplitude resonant beam halo causing loss of beam particles[8].
Therefore the control of this mode, even when stable, can be of critical importance.

In this paper we carry out a systematic parametric analysis of mismatch modes supported by the KV envelope
equations for continuous focusing, periodic solenoid, and periodic quadrupole doublet linear transport lattices. Regions
of strong parametric (band) instability for the periodic lattices are numerically mapped in a scaled manner rendering
results immediately applicable to a large range of beam parameters and lattices. New classes of envelope instability
are found and results are checked against analytical calculations of the envelope modes in the zero space-charge limit
and in the thin-lens limit with a beam of maximal space-charge intensity. Important and often overlooked mode
launching conditions and sources of envelope mismatch (driving terms) due to focusing errors, particle loss, and
emittance evolution are analyzed. These launching conditions are of practical importance in understanding how to
launch pure mode oscillations in experiments and simulations which can aid in understanding of complex effects.

This paper is organized as follows. In Sec. II, the envelope model employed is developed. The basic equations
are reviewed, classes of transport lattices are defined, characteristic envelope responses are calculated, convenient
parameterizations are identified, equations describing small amplitude driven perturbations about the matched beam
envelope are derived, and general properties of envelope mode solutions are analyzed. Self-consistent KV distributions
for solenoidal focusing channels are developed in Appendix B. These results are important to establish the validity
of models employed. In Sec. III, the linear mode structure is completely solved in the continuous focusing limit
employing a Green’s function approach and the structure of the formal solutions are illustrated with specific examples
to understand the differences between adiabatic, sudden, and harmonic driven perturbations. Next, normal envelope
modes of periodic solenoidal and quadrupole doublet lattices are analyzed in Secs. IV and V. In both sections
numerical results are presented that illustrate properties of: the matched envelope solutions, mode properties and
symmetries, regions of parametric (band) instability, and pure mode launching conditions.

II. MODEL EQUATIONS

We consider an unbunched beam of ions of charge q and mass m coasting with axial relativistic factors βb = const
and γb = 1/

√
1 − β2

b . The ions are confined transversely by linear applied focusing fields that may result from a
variety of focusing systems. Linear space-charge forces internal to the beam envelope are assumed, corresponding to
a spatially uniform distribution of charge within an elliptical beam envelope with beam image charges induced on any
aperture structures neglected.

A. KV envelope equations

As illustrated in Fig. 1, the transverse beam cross section at axial coordinate s is taken to have an s-varying elliptical
cross-section with envelope (i.e., edge) radii rx(s) and ry(s) along the principal x- and y-coordinate axes. The charge
distribution is centered at x = y = 0 with uniform uniform space-charge within the ellipse (x/rx)

2 + (y/ry)
2 = 1, and

zero outside. The x- and y-equations of motion for the orbit of a single-particle within this uniform density elliptical
beam are given by [1, 2]

x′′(s) + κx(s)x(s) −
2Qx(s)

[rx(s) + ry(s)]rx(s)
= 0,

y′′(s) + κy(s)y(s) −
2Qy(s)

[rx(s) + ry(s)]ry(s)
= 0,

(1)

where κx(s) and κy(s) represent linear applied forces of focusing optics in the transport lattice, and

Q =
qλ

2πε0mc2γ3
bβ

2
b

= const (2)

is the dimensionless beam perveance representing self-field defocusing forces internal to the beam. Here, λ = const
is the beam line-charge density, c is the speed of light in vacuuo, and ε0 is the permitivity of free-space. In the limit
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FIG. 1: Transverse cross section of an elliptical beam centered at x = y = 0 with envelope radii rx and ry along the x- and
y-axes and uniform charge density within the ellipse.

of negligible beam space-charge, Q → 0 in Eq. (1), and the particle moves solely in response to the applied focusing
forces of the lattice.

For a uniform density elliptical beam, the envelope radii rx and ry are connected to statistical moments of the
distribution by

rx = 2
√
〈x2〉⊥,

ry = 2
√
〈y2〉⊥,

(3)

where 〈· · · 〉⊥ denotes a transverse statistical average over the beam phase-space. Differentiating Eq. (3) with respect
to s and employing the equations of motion (1) yields coupled ordinary differential equations describing the evolution
of the envelope radii rx(s) and ry(s)[1, 2, 7]

r′′j (s) + κj(s)rj(s) −
2Q

rx(s) + ry(s)
−

ε2j
r3j (s)

= 0. (4)

Here and henceforth j ranges over both transverse coordinates x and y, and

εx = 4[〈x2〉⊥〈x′2〉⊥ − 〈xx′〉2⊥]1/2,

εy = 4[〈y2〉⊥〈y′2〉⊥ − 〈yy′〉2⊥]1/2
(5)

are the rms emittances which provide statistical measures of the beam phase-space area projections in the x-x′ and
y-y′ phase-spaces. For charge distributions that are constant on nested elliptical surfaces, the envelope equations (4)
are valid with evolving emittances and can be solved for the evolution of rj(s) provided consistent emittance evolutions
are employed[6]. In this situation the envelope equations are often referred to as the rms envelope equations and can
be applied to a wide variety of nonuniform laboratory beams through an “equivalence” to a uniform density beam
with equal second-order statistical moments[2, 5, 6]. For the case of a KV distribution with uniform space-charge, the
εj are constants and the envelope equations are referred to as the KV envelope equations[1–3]. The corresponding
self-consistent KV distribution under a Vlasov model is singular and unphysical and has numerous higher-order
collective instabilities internal to the beam[4, 9]. However, in cases of reasonably smooth initial beam distributions
and a transport channel tuned for applied focusing linearity and a lack of instabilities, the emittance evolutions will
be small, the linear space-charge model will be accurate, and the KV envelope model with constant emittances can
be reliably applied.

For a particular focusing lattice [i.e., specified focusing functions κj(s)] and beam parameters (Q and εj), the KV
envelope equations (4) are typically integrated from an initial condition (i.e., specified rj and r′j at s = si) to solve
for the envelope evolution. In many cases we will take εx = εy ≡ ε = const corresponding to a beam with isotropic
transverse temperature (on average) and negligible emittance evolution propagating in a linear transport channel
without bends, dispersion, and edge-focusing.
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B. Periodic transport channels and beam matching

In a periodic transport lattice, applied focusing elements are arranged in a periodic sequence with lattice period Lp
and lattice focusing functions κj(s) satisfying

κj(s+ Lp) = κj(s). (6)

The matched beam envelope is the solution to the KV envelope equations (4) in a periodic transport where the
envelope radii rj(s) are also periodic functions with period of the lattice, i.e., rj(s) = rjm(s) with

rjm(s+ Lp) = rjm(s). (7)

For specified focusing functions κj(s), beam perveance Q, and emittances εj , this is equivalent to requiring that rj
and r′j satisfy specific initial conditions at s = si when the envelope equations (4) are integrated as an initial value
problem. Required initial conditions will change with the phase of si within the lattice period. The matched envelope
solution is important because it is believed to have minimum radial excursions in the transport channel relative to all
other possible envelope evolutions[10], thereby allowing use of more radially compact transport channels.

Although formulations in the following parts of this section apply for arbitrary periodic focusing functions κj(s), in
Secs. III–V we analyze special classes of (a) continuous, (b) periodic solenoidal, and (c) periodic quadrupole doublet
focusing lattices described below with κj(s) that are piecewise constant, corresponding to so-called hard-edge or
square-edge models. These three choices are representative of broad classes of lattices used in practical applications
and can guide analysis of more complicated lattices. Examples of matched envelope solutions will be presented for
each class of lattice in Secs. III–V. These hard-edge models can be applied to a wide range of periodic solenoid and
quadrupole lattices with fringe fields where the κj(s) vary smoothly in s by using equivalent hard-edge replacement
prescriptions (see Appendix A).

(a) Continuous focusing, with equal and constant focusing in each plane [see Fig. 2(a)][2]. In this case,

κx(s) = κy(s) = k2
β0 = const > 0. (8)

Continuous focusing is equivalent to a partially neutralizing, non-interacting background of charges and is
commonly used to simply estimate the average focusing properties of periodic lattices in rapid design estimates.
Here, kβ0 is the wavenumber of particle oscillations in the absence of space-charge (see Sec. II D). The choice
of “lattice period” Lp for continuous focusing is arbitrary.

(b) Solenoidal focusing, produced by a magnetic field B(s) = −[B ′
z(s)/2](xx̂ + yŷ) + Bz(s)ẑ with period Lp [see

Fig. 2(b)][2]. In this case,

κx(s) = κy(s) ≡ κ(s) =

[
qBz(s)

2mγbβbc

]2
. (9)

Here, the envelope equations (4) must be interpreted in a local rotating “Larmor” frame in the sense shown in
Appendix B. In analyses of solenoidal focused systems, we will assume that all calculations carried out in the
Larmor frame unless otherwise noted. We define a hard-edge lattice where the solenoids have axial length ηLp
with κ = κ̂ = const > 0 within the solenoid and zero outside and the solenoids are separated by axial drifts
of length d = (1 − η)Lp. Here, η ∈ (0, 1] is the occupancy factor of the solenoid in the lattice period. In the
Larmor frame, solenoidal focusing is equivalent to continuous focusing in the limit η → 1.

(c) Quadrupole doublet focusing in an alternating gradient lattice with period Lp [see Fig. 2(c)][2]. In this case,

κx(s) = −κy(s) ≡ κq(s). (10)

The quadrupole focusing fields are commonly derived either from electrostatic or magnetostatic lenses. In terms
of a simple 2D field model, the focusing strength for electric lenses can be expressed as

κq =
1

[Bρ]

dEx
dx

, (11)

where [Bρ] ≡ γbβbmc/q is the particle rigidity and dEx/dx is the (generally s-varying) linear quadrupole field
gradient of the electric field. Similarly, the focusing strength for magnet lenses can be expressed as

κq =
1

[Bρ]βbc

dBx
dy

, (12)
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where dBx/dy is the (generally s-varying) linear quadrupole field gradient of the magnetic field. We define a
hard-edge doublet lattice where the focusing (κq > 0 for focusing in x) and defocusing (κq < 0) quadrupoles have
axial length ηLp/2 with κq = ±κ̂q with κ̂q = const within the quadrupoles and zero outside, and are separated
by (generally unequal) axial drifts of length d1 = α(1 − η)Lp and d2 = (1 − α)(1 − η)Lp. Here, η ∈ (0, 1] is the
quadrupole occupancy factor in the lattice period, and α ∈ [0, 1] is a syncopation factor that measures how close
the focusing and defocusing quadrupoles are to each other in the lattice period. For the special case of α = 1/2
corresponding to a symmetric FODO lattice, the drifts are equal [d1 = d2 = (1 − η)Lp/2] and the lenses are
equally spaced. For α 6= 1/2, the lattice is called syncopated. Without loss of generality, we restrict analysis
to 0 ≤ α ≤ 1/2 because values of α with 1/2 ≤ α ≤ 1 can be mapped to the range 0 ≤ α ≤ 1/2 by relabeling
lattice quantities.

s

s

sD-Quad

F-Quad

Lp
Lattice Period

d1 d2ηLp/2

ηLp/2

ηLpd/2

x-Plane Focusing Forces
a) Continuous Focusing

b) Periodic Solenoidal Focusing

c) Periodic Quadrupole Doublet Focusing

κx(s)

κx(s)

κx(s)

 ( κx = κy = k2
β0 = const )

k2
β0

 ( κx = κy )

 ( κx = -κy )

κ

κq

−κq
d1 = α(1−η)Lp
d2 = (1−α)(1−η)Lp

d = (1−η)Lp
d/2

^

^

^

d/2

FIG. 2: Linear focusing functions for (a) continuous focusing, (b) periodic solenoidal focusing, and (c) periodic quadrupole
doublet focusing.

C. Characteristic Envelope Responses

The envelope evolution in the periodic, hard-edge focusing lattices described in Sec. II B can be interpreted in terms
of the sequential response of the envelope to the focusing action of optical elements followed by free-drift expansions
without focusing (κj = 0).

No general analytical solutions to the envelope evolution within hard-edge solenoidal or quadrupole optics are known
for arbitrary values of Q and εj . Some simplifications can be made using the envelope Hamiltonian as a constant of
the motion within a particular optical element, but full integrations of the envelope trajectories rj(s) are not known.
However, the essential effect of the optics can be simply understood in the thin-lens limit where η → 0 while adjusting
the focusing strength such that the desired net particle focusing (measured by σ0j , see Sec. II D) is produced. This is
effected by taking

κj(s) =
1

f
δ(s− so), (13)
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where δ(s) is the Dirac delta-function, f = const is the thin-lens focal length, and s = so is the axial location of the
equivalent model optical impulse. In this thin-lens limit, it follows from Eqs. (4) and (13) that the action of the optic
is to transform the envelope as

(
rj
r′j

)∣∣∣∣
s+o

=

[
1 0
− 1
f 1

] (
rj
r′j

)∣∣∣∣
s−o

, (14)

where |s±o denotes the limit lims→so from above and below s = so. For solenoidal and quadrupoles that are focusing
in the j-plane, f > 0, whereas for defocusing quadrupoles in the j-plane, f < 0.

General analytical solutions for the envelope evolution in drift regions are also unknown, though some simplifications
can be made using envelope Hamiltonian invariants in particular drift regions. However, the range of drift envelope
evolution can be analytically understood in the extremes of an emittance-dominated beam with Q = 0 and a space-
charge dominated beam with εj = 0. First, in the limit of a emittance-dominated beam, Q = 0, and the j-plane
envelope equation (4) reduces to

r′′j −
ε2j
r3j

= 0. (15)

This equation is straightforward to integrate using the constancy of the envelope Hamiltonian, r′2j /2+ε2j/(2r
2
j ) = const.

After some manipulations we obtain

rj(s) = rj(si)

√√√√1 +
2r′j(si)

rj(si)
(s− si) +

[
1 +

r2j (si)r
′2
j (si)

ε2j

]
ε2j

r4j (si)
(s− si)2. (16)

Here, s = si is the initial condition where rj = rj(si) and r′j = r′j(si). In the opposite limit of a space-charge
dominated beam, εj = 0, the envelope equations can be cast in decoupled form using sum and difference coordinates
defined as r± = (rx ± ry)/2 to give

r′′+ − Q

r+
= 0,

r′′− = 0.

(17)

The constancy of the envelope Hamiltonian, r′2+/2 − Q ln r+ = const can be employed to simplify integration of the
equation for r+ and the equation for r− is trivially integrable. We obtain (see Appendix C)

r+(s) = r+(si) exp


−r

′2
+(si)

2Q
+

[
erfi−1

{
erfi

[
r′+(si)√

2Q

]
+

√
2Q

π
e
r′2+ (si)

2Q
(s− si)

r+(si)

}]2

 ,

r−(s) = r−(si) + r′−(si)(s− si).

(18)

Here, erfi(z) = erf(iz)/i = (2/
√
π)
∫ z
0
dt exp(t2) is the imaginary error function, i ≡

√
−1, and notation on initial

conditions is analogous to that employed in Eq. (16). An alternative form of the solution for r+ has been presented
by Humphries[11].

To contrast these two limiting free-drift solutions, the envelope expansions rx(s)/rx(si) and r+(s)/r±(si) given by
Eqs. (16) and (18) are plotted in Fig. 3 for equal initial forces Q/r+(si) = εx/r

3
x(si) and zero initial angles. The

space-charge dominated expansion is more rapid due to the ∼ 1/r+ expansion force being larger than the ∼ 1/r3x
expansion force at large radii.

D. Single-particle phase advances

Because it is useful to employ single-particle phase advances to parameterize matched solutions to the KV envelope
equations (4), we review these phase advances here in order to define notations employed and summarize results
needed later.

The solution to the linear x-equation of motion (1) can be expressed in terms of a transfer map as[12, 13]

(
x(s)
x′(s)

)
= Mx(s|si) ·

(
x(si)
x′(si)

)
, (19)
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FIG. 3: Scaled envelope free-expansions rx(s)/rx(si) and r+(s)/r+(si) plotted versus axial coordinate s−si. Curves correspond
to the emittance-dominated (Q = 0) and space-charge dominated (εx = 0) limits given by Eqs. (16) and (18). Initial coordinates
at s = si correspond to Q/r+(si) = εx/r

3
x(si), Q = 10−3, rx(si) = r+(si) = 0.01 m, and r′x(si) = r′+(si) = 0.

where Mx(s|si) denotes the 2 × 2 transfer matrix from the initial x-plane particle phase-space coordinates at axial
coordinate s = si to the phase-space coordinates at s. An analogous equation holds for the y-plane orbit. An
eigenvalue analysis of Mj(s|si) shows that orbit stability corresponds to

1
2 |TrMj(si + Lp|si)| < 1, (20)

and that TrMj(si + Lp|si) is independent of the initial axial coordinate si.
A stable orbit of the particle satisfying Eq. (1) can be expressed in terms of the phase-amplitude formulation

as[12, 13]

x(s) = Axwx(s) cos[ψx(s)],

y(s) = Aywy(s) cos[ψy(s)],
(21)

where Aj = const and the amplitude and phase functions wj and ψj satisfy

w′′
j + κjwj −

2Qwj
(rx + ry)rj

− 1

w3
j

= 0,

ψ′
j =

1

w2
j

.

(22)

For a periodic lattice with κj(s + Lp) = κj(s), without loss of generality, wj can be taken to be the positive, real
solution to the amplitude equation satisfying wj(s+ Lp) = wj(s). Comparing the amplitude equation (22) with the
envelope equation (4) for a matched beam, we we observe that rjm and wj are related as

rjm =
√
εjwj . (23)

The phase advance σj of the orbit through one lattice period can then unambiguously defined by integrating ψ′
j = 1/w2

j

to yield

σj = ψj(si + Lp) − ψj(si) = εj

∫ si+Lp

si

ds

r2jm(s)
, (24)

independent of si. Analysis of the transfer matrix elements then shows that

cosσj = 1
2 TrMj(si + Lp|si). (25)

Direct application of this formula to calculate σj requires proper branch identification.
For the case of an isotropic beam with εx = εy ≡ ε and the three classes of lattices outlined in Sec. II B, the phase

advances of the x- and y-orbits will be equal, i.e., σx = σy. In this symmetric situation, we will not distinguish
between σx and σy, and we denote σx = σy ≡ σ.
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In the limit of zero space-charge (Q→ 0), we denote the phase advance σj calculated from Eq. (24) as

σ0j ≡ lim
Q→0

σj . (26)

The so-called undepressed phase-advance σ0j measures the phase advance of particles in response to the linear applied
focusing fields and provides a measure of the focusing strength of the lattice. For periodic focusing lattices with
κx = κy or κx = −κy, σ0x = σ0y, and we denote σ0x = σ0y ≡ σ0. Equations (1) and (25) can be employed to relate
σ0 = limQ→0 σ to the lattice focusing functions κj .

For the three classes of lattices described in Sec. II B, we summarize expressions for σ0. First, for the continuous
focusing lattice, κx = κy = k2

β0 = const and there is no strict periodicity. However, for purposes of comparisons to

periodic systems (see Fig. 2), we can define the undepressed particle phase advance σ0 over an arbitrary “period” Lp
by

k2
β0 =

(
σ0

Lp

)2

. (27)

For the hard-edge solenoidal and quadrupole doublet focusing channels illustrated in Fig. 2, it can be shown that

cosσ0 = cos(2Θ) − 1 − η

η
Θ sin(2Θ) (28)

for the solenoidal channel with Θ ≡
√
κ̂Lp/2, and

cosσ0 = cosΘ coshΘ +
1 − η

η
Θ(cosΘ sinhΘ − sin Θ coshΘ)

− 2α(1 − α)
(1 − η)2

η2
Θ2 sin Θ sinhΘ

(29)

for the quadrupole channel with Θ ≡
√
|κ̂q |Lp/2. For any periodic channel with specified focusing functions κj(s)

(possibly including fringe variations), particular values of σ0 can be produced by scaling the amplitude of the focusing
functions, i.e., κx → kκx and κy → kκy with k = const constrained by σ0. For example, consider the hard-edge
quadrupole lattice. At specified lattice period Lp, occupancy η, and syncopation factor α, Eq. (29) constrains the
value of the focusing strength |κ̂q| in terms of σ0.

The thin-lens limit of Eqs. (28) and (29) can be explored by setting κ̂ = η/(fLp) for solenoids and κ̂q = η/(fLp)
for quadrupoles and then taking the limit η → 0. This gives

cosσ0 =





1 − 1
2
Lp
f , thin-lens solenoids,

1 − 2α(1 − α)
(
Lp
f

)2

, thin-lens quadrupoles.
(30)

These results can also be derived directly from a transfer matrix approach of the undepressed orbits using Eq. (25)
in the limit Q→ 0 to show that

cosσ0 =
1

2
Tr

[
1 Lp
0 1

][
1 0
− 1
f 1

]
= 1 − 1

2

Lp
f
,

cosσ0 =
1

2
Tr

[
1 0
− 1
f 1

] [
1 αLp
0 1

] [
1 0
1
f 1

][
1 (1 − α)Lp
0 1

]
= 1 − 2α(1 − α)

(
Lp
f

)2

,

for solenoidal and quadrupole channels, respectively.
When σ0x = σ0y and σx = σy , the ratio of space-charge depressed to undepressed phase advances σ/σ0 provides

a convenient, normalized measure of space-charge intensity which we call the space-charge depression. For a fixed
value of σ0, the limit σ/σ0 → 0 corresponds to a cold-beam at the space-charge limit with zero emittance (i.e., Q 6= 0
and ε = 0, or Q → ∞ for finite ε), and the limit σ/σ0 → 1 corresponds to an emittance-dominated beam with zero
space-charge effects (i.e., ε 6= 0 with Q = 0, or ε → ∞ for finite Q). Stability properties of the envelope equations
(4) will be characterized in terms of σ0 and σ/σ0 for stable undepressed orbits with σ0 ∈ (0, π) and the full range of
space-charge intensity σ/σ0 ∈ [0, 1].

Matched envelopes can also exist in periodic transport channels for ranges (bands) of σ0j with σ0j > π. These
bands will correspond to higher focusing strength (e.g., larger κ̂ for the hard-edge solenoidal lattice) and will be
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separated from the stable range σ0j ∈ (0, π) by so-called stop bands where (1/2) |TrMj(si + Lp|si)| > 1 and the
single-particle orbits are unstable. Successive stable bands will have narrower ranges of σ0j and the first stop band
begins at σ0j = π. Higher stable bands tend to be more sparse and narrower for quadrupole focusing as opposed to
solenoidal focusing, as can be seen from analyzing regions where |cosσ0| < 1 from Eqs. (28) and (29). This occurs
because stronger quadrupole focusing in alternating gradient lattices tends to produce large excursions within the
defocusing quadrupoles, leading to narrow parameter bands for stable orbit bundles. Higher stable bands in solenoidal
channels are wider than for quadrupole channels because such systems are focusing in all planes. However, contrary to
assertions by some authors[14–16], we find that machine operation in higher bands of stability for solenoidal focusing
will not, in general, prove advantageous. This follows because the higher bands require significantly larger focusing
strengths, while for fixed beam perveance Q, these stronger optics also result in matched beams with larger envelope
excursions than for σ0j < π, leading to larger apertures needed for beam confinement[17]. Moreover, matching the
beam envelope to transport at high phase advances from lower phase advances can prove problematic. Because of
these problems we only consider σ0j ∈ (0, π) in this paper. Contrary to σ0j > π, we find that for fixed Q in periodic
focusing lattices with high degrees of symmetry, that the matched beam envelope generally is radially more compact
for higher values of σ0j in the range σ0j ∈ (0, π)[18, 19].

E. Scaled envelope equations and system parameters

Solutions for the envelope equations (4) can be parameterized in terms of the lattice focusing functions κj , the
perveance Q, and the emittances εx = εy = ε. For example, in the hard-edge solenoid and quadrupole doublet lattices
defined in Sec. II B, the functions κj are described in terms of the lattice period Lp, the occupancy η, the focusing
strength κ̂ (solenoids) or κ̂q (quadrupoles), and the syncopation parameter α (quadrupoles only). Thus for hard-edge
solenoids, five “direct” parameters (Lp, η, κ̂, Q, and ε) can be employed to specify the matched beam solution,
while for the hard-edge quadrupole doublet six direct parameters (Lp, η, α, κ̂q, Q, and ε) can be employed. Other
choices of hard-edge solenoidal and quadrupole lattices yield similar direct parameters. Focusing lattices including
axial fringe field models of the elements introduce additional direct parameters that replace the hard-edge occupancy
η and focusing strengths κ̂ and κ̂q .

Rather than employing the direct parameters, matched beam solutions of the envelope equations can be described
with a reduced number of dimensionless parameters[20, 21]. The particle phase advance parameters σ0 and σ (or σ0

and σ/σ0). This procedure can be carried out by introducing scaled coordinates for continuous focusing, or general
solenoidal and quadrupole transport lattices as follows. For equal emittances and finite perveance (i.e., εx = εy ≡ ε
and Q > 0), the envelope equations (4) can be expressed for the three classes of lattices as

d2

dS2
Rj + ξjF (S;σ0, {S})Rj −

1

Rx +Ry
− Γ2

R3
j

= 0. (31)

Here, S = s/Lp is a dimensionless axial coordinate that increases by unity as the beam advances over a lattice period
Lp,

Rj =
rj√

2QLp
, (32)

are dimensionless scaled envelope radii, for continuous or solenoidal focusing ξj = 1, for quadrupole focusing ξx = +1
and ξy = −1, F (S;σ0, {S}) is a scaled focusing function that depends on S, σ0, and a set of “shape” parameters {S}
of the focusing function, and

Γ =
ε

2QLp
(33)

is a dimensionless parameter measuring relative space-charge intensity. For a matched beam envelope (i.e., rj = rjm),
the parameter Γ can be related to the depressed particle phase advance σ through Eq. (24) as

σ = Γ

∫ 1

0

dS

R2
j (S)

. (34)

The parameters of the scaled envelope equations (31) are σ0, the shape parameters {S} which describe the action of
the applied focusing forces on a single-particle, and the dimensionless parameter Γ defined in Eq. (34), or alternatively
to Γ, σ or σ/σ0.
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Specific examples of the scaled focusing function F (S;σ0, {S}) for the hard-edge solenoidal and quadrupole lattices
described in Sec. II B clarify the forms given in Eqs. (31)–(34). For the solenoidal lattice, we take F (S;σ0, {S}) =
F (S;σ0, η) = [L2

pκ̂][κx(s)/κ̂] where [κx(s)/κ̂] is a function of S and η, and [L2
pκ̂] is a function of σ0 and η through

an application of the phase advance equation of constraint (28). Similarly, for the quadrupole lattice, we take
F (S;σ0, {S}) = F (S;σ0, η, α) = [L2

p|κ̂q|][κx(s)/|κ̂q |], where [κx(s)/|κ̂q|] is a function of S, η, and α, and [L2
p|κ̂q|] is a

function of σ0, η, and α through an application of the phase advance equation of constraint (29). For the special case
of continuous focusing, there are no shape parameters (i.e., {S} = ∅), and the choice of lattice period Lp entering in
σ0 and σ is arbitrary. Hence, matched solutions in continuous focusing can be regarded as a function solely of σ/σ0

(see also Sec. III A).
From the results above, it follows that the matched beam envelope in the hard-edge solenoidal transport lattice

considered can be described in terms of three parameters: the magnet occupancy η, the undepressed particle phase
advance σ0, and the space-charge depression σ/σ0 rather than five direct parameters[20]; whereas matched solutions
to the quadrupole doublet lattice can be described in terms of four parameters: η, σ0, σ/σ0, plus the syncopation
factor α (α ≡ 1/2 for the special case of a symmetric FODO lattice) rather than the five direct parameters[21]. In
subsequent analyses we will exploit this reduction by specifying matched beam solutions in terms of these reduced
parameter sets. However, to maintain direct connection the usual form of the envelope equations we will carry out
most analyses in terms of conventional dimensioned envelope coordinates and direct parameters.

F. Small amplitude perturbations about the matched beam envelope

To analyze the evolution of perturbations about the matched beam envelope, we resolve the envelope coordinates
rj evolving according to Eq. (4) from general initial conditions as

rj(s) = rjm(s) + δrj(s). (35)

Here, rjm is a matched solution to the envelope equation and δrj are perturbations about the matched beam envelope.
In the small-amplitude limit we require that |δrj | � rjm over the range of s analyzed. The envelope perturbations
δrj are typically referred to as mismatch oscillations about the matched beam envelope.

In addition to the perturbations in the envelope coordinates δrj , we consider additional driving perturbations that
can excite the envelope perturbations from the matched beam condition. Specifically, we allow the lattice focusing
functions κj , the beam perveance Q, and the rms emittances εj to vary by making the following substitutions in the
envelope equations (4)

κj(s) → κj(s) + δκj(s),

Q→ Q+ δQ(s),

εj → εj + δεj(s).

(36)

Here, δκj(s) represent perturbations to the focusing functions κj(s) used in generating the matched beam envelope,
δQ(s) with −Q ≤ δQ ≤ 0 represents the effect of particles lost outside the beam envelope, and δεj(s) with εj+δεj > 0
model evolutions in the rms emittances. The focusing perturbations δκj(s) need not be periodic and can represent
construction and excitation errors in the focusing optics. The long-path trend of the perturbed perveance δQ(s) ≤ 0
will be negative due to halo particles being scraped, but it can locally increase if any halo particles re-enter the core
distribution. Similarly, over a long path the emittance perturbations δεj(s) will tend to be positive and increasing due
to the relaxation of the beam in response to nonlinear applied focusing fields, space-charge nonlinearities, etc., but
can locally decrease because rms emittances are statistical measures of phase-space area (e.g., momentary unwrapping
of strong “S”-shaped distortions in the particle phase-space, etc.). In the small amplitude regime we require that
δQ� Q and that δκj and δεj be small in the sense that they induce small corrections on the particle orbits relative
to κj and ε, respectively. Higher-order theories outside the scope of the envelope model are generally necessary to
calculate δQ(s) and δεj(s) for use in this formulation.

Inserting Eqs. (35) and (36) into the envelope equation (4) and neglecting all terms of order δ2 and higher yields
the linearized perturbation equations

δr′′j + κjδrj +
2Q

(rxm + rym)2
(δrx + δry) +

3ε2j
r4jm

δrj

= −rjmδκj +
2

rxm + rym
δQ+

2ε2j
r3jm

δεj .

(37)
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These equations can be equivalently expressed in first-order matrix form as

d

ds
δR + K · δR = δP, (38)

where

δR =



δrx
δr′x
δry
δr′y


 (39)

is a vector of perturbed envelope phase-space coordinates,

K =




0 −1 0 0
kxm 0 k0m 0
0 0 0 −1
k0m 0 kym 0


 (40)

with

k0m =
2Q

(rxm + rym)2
,

kjm = κj + 3
ε2j
r4jm

+ k0m,

(41)

is a 4 × 4 matrix with periodic s-dependence of period Lp, and

δP =




0

−δκx + 2 δQ
rxm+rym

+ 2 εxδεxr3xm
0

−δκy + 2 δQ
rxm+rym

+ 2
εyδεy
r3ym


 (42)

is a vector of driving perturbations. The solution to Eq. (38) can be expressed as

δR = δRh + δRp, (43)

where δRh is the general solution to the homogeneous equation (38) with δP = 0, and δRp is any particular solution
for the full equation with general δP. Henceforth, the homogeneous and particular components of the solution will
be analyzed in turn without explicitly distinguishing them to avoid cumbersome notation.

For the special cases of continuous (κx = κy = k2
β0 = const) and periodic solenoidal focusing (κx = κy = κ) channels

with a round beam equilibrium (εx = εy = ε and rxm = rym = rm), considerable simplification results by resolving
the envelope perturbations into sum and difference variables as

δr± ≡ δrx ± δry
2

. (44)

In these cases, the perturbed envelope equations (37) can be expressed as

δr′′+ + κ δr+ +
2Q

r2m
δr+ +

3ε2

r4m
δr+ = −rm

(
δκx + δκy

2

)
+

1

rm
δQ+

2ε2

r3m

(
δεx + δεy

2

)
,

δr′′− + κ δr− +
3ε2

r4m
δr− = −rm

(
δκx − δκy

2

)
+

2ε2

r3m

(
δεx − δεy

2

)
,

(45)

and are decoupled. Here, κ = k2
β0 for continuous focusing. Each of the decoupled equations for δr± in Eq. (45) can be

cast into matrix form analogous to Eqs. (38)–(43). However, in this case the vectors and matrices will be of dimension
2 rather than dimension 4. From the structure of Eq. (45), note that changes in beam perveance (i.e., δQ 6= 0) drive
only δr+ and not δr−, whereas changes in focusing strength (δκj 6= 0) and emittance (δεj 6= 0) can project on δr+
for in-phase error components in x and y, and δr− for out of phase errors. Also, due to the additional factor of
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(2Q/r2m)δr+, the restoring force coefficient ∝ δr± is larger in the equation for δr+ than in the equation for δr−, and
oscillations in δr+ will be more rapid than oscillations in δr− for Q 6= 0.

The homogeneous solution to the linear equations (38) describes the evolution of normal mode perturbations
launched by mismatch in the initial conditions at s = si (i.e., δR 6= 0 at s = si), whereas the particular solution
describes how mismatch oscillations can be driven by changes in beam and focusing parameters. The normal modes
supported by the homogeneous equations have been previously analyzed for both continuous and periodic focusing
channels by Struckmeier and Reiser[7]. In this paper, this previous work is extended to carefully identify classes of
modes supported over a wide range of system parameters.

The homogeneous solution to Eq. (38) can be expressed in terms of a transfer map as

δR(s) = Me(s|si) · δR(si), (46)

where Me(s|si) is a 4 × 4 matrix that maps the perturbed envelope coordinates δR from an initial axial coordinate
s = si to position s. Stability and launching conditions of normal modes can be analyzed in terms of eigenvalues and
eigenvectors of the transfer map Me[12, 13, 22]. The four complex eigenvectors En and eigenvalues λn (not to be
confused with the line-charge λ) of the envelope transfer matrix through one lattice period Me(si + Lp|si) from an
initial condition si are defined according to

Me(si + Lp|si) · En(si) = λnEn(si), (47)

where n = 1, 2, 3, and 4. The overall scale of the eigenvectors En is arbitrary. Without loss of generality, we take all
eigenvectors to be normalized according to En ·E∗

n = 1, where ∗s denote complex conjugation. The eigenvalues λn are
independent of the location of the initial axial coordinate si, whereas the eigenvectors En(si) vary with the relative
location of si in the lattice period[22]. Stability in the sense of bounded excursions of perturbations in phase-space
correspond to λn on the complex unit circle with |λn| = 1 for all n, whereas instability results from any λn lying off
the complex unit circle (i.e., at least one unstable mode).

Because the envelope perturbation equations are real and Hamiltonian, Me is a real symplectic matrix. Conse-
quently, the four eigenvalues λn of Me occur both as complex conjugate pairs (λn, λ∗n) and reciprocal pairs (λn,
1/λn) and can be categorized according to four symmetry classes (not counting possible degeneracies) described by
Dragt[12, 22]. These classes with associated eigenvalue and eigenvector symmetries are illustrated in Fig. 4. Eigen-
values are expressed in polar form as λn = γn exp(iσn) with real γn and σn and the specific labellings in n indicated.
Standard analyses[12, 13, 22] show that γn is the growth factor of the mode per lattice period with |γn| = 1 cor-
responding to stable oscillations, and |γn| > 1 and |γn| < 1 corresponding to oscillations with exponential growth
and damping, respectively. The number of e-folds that the amplitude of mode oscillations grows per lattice period is
ln |γn|. It is shown later that σn is related to the phase advance of the mode oscillations per lattice period. For each
of the four classes of eigenvalue symmetries in Fig. 4, two real numbers are needed to describe the four eigenvalues
[e.g., σ1 and σ2 in case (a)]. In case (a), |λn| = 1 and the eigenvectors corresponding to eigenvalues λn and 1/λn are
simply related as complex conjugates with E3 = E∗

1 and E4 = E∗
2. For |λn| 6= 1, some relation between eigenvectors

associated with the eigenvalues λn and 1/λn (i.e., through operations with Me, M−1
e , symplectic group generators,

conjugation, etc.) would be useful rather than calculating them both directly from the characteristic equation defining
the eigenvalues from Eq. (47). Unfortunately, it was shown that no such relationship exists in cases (c) and (d) [e.g.,
E1 and E3 are not simply related in case (c)]. Although such a relationship may in principle exist in case (b), efforts
to derive it failed.

In Fig. 4, eigenvalues in case (a) correspond to stability (γn = 1), whereas cases (b)–(d) are unstable. Case (b) is
called a “confluent resonance” instability because it represents a parametric resonance between both envelope mode
oscillation frequencies and the lattice as evident by the eigenvalue symmetry. Cases (c) and (d) are called “lattice
resonance” and “double lattice resonance” instabilities because they represent a half-integer parametric resonance
between the focusing structure and one or both mode oscillation frequencies. Transitions between cases lead to
degenerate eigenvalues which can result in either linear growth in oscillation amplitude with periods traversed or no
instability[22]. Which case the degeneracy falls into requires further analysis and is not addressed in this paper (other
than a special case in the thin-lens limit) because the degenerate cases correspond to lower-dimensional surfaces in
accessible parameter-space that are launched with probability zero. For the types of lattices in Sec. II B, we find in
Secs. III–V that the eigenvalues λn fall into cases (a)–(c) and case (d) does not occur.

Any initial envelope perturbation at s = si can be expanded in terms of the eigenvectors as

δR(si) =

4∑

n=1

αnEn(si), (48)

where the αn are complex constants subject to δR(si) being real. To launch pure envelope modes with specific phase
advances and growth factors for each of the eigenvalue classes listed in Fig. 4, it is convenient to resolve the initial
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FIG. 4: Four possible classes of symmetries for the four eigenvalues defined by Eq. (47) corresponding to stability in (a), and
instability in (b), (c), and (d).

condition δR(si) = δR`(si) into pure normal modes as summarized in Table I. Mode structures are illustrated in the
table by mappings of the pure mode initial condition through one lattice. The eigenvectors En, and consequently
the pure mode launching conditions δR`(si), vary with the relative location of the initial condition si in the lattice
period. Note that cases (a) and (b) in Fig. 4 have two distinct modes, while cases (c) and (d) have three and four
distinct modes.

The evolution of the beam mismatch δR(s) can also be interpreted as evolving linear projections of envelope
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TABLE I: Launching conditions for distinct normal modes corresponding to the eigenvalue classes illustrated in Fig. 4. Here,
A` and ψ` are real-valued amplitudes (unnormalized) and phases of mode ` (` = 1, 2, and possibly 3 and 4 under conventions
taken), and σ` and γ` > 1 are the phase advances and growth factors of the mode over one lattice period. Symbols are
abbreviated with δR` ≡ δR`(si), E` ≡ E`(si), and Me ≡ Me(si + Lp|si).

Case Mode Launching Condition Lattice Period Advance

(a) Stable 1 - Stable Oscillation δR1 = A1(e
iψ1E1 + e−iψ1E

∗
1) MeδR1(ψ1) = δR1(ψ1 + σ1)

2 - Stable Oscillation δR2 = A2(e
iψ2E2 + e−iψ2E

∗
2) MeδR2(ψ2) = δR2(ψ2 + σ2)

(b) Unstable 1 - Exponential Growth δR1 = A1(e
iψ1E1 + e−iψ1E

∗
1) MeδR1(ψ1) = γ1δR1(ψ1 + σ1)

Confluent Resonance 2 - Exponential Damping δR2 = A2(e
iψ2E2 + e−iψ2E

∗
2) MeδR2(ψ2) = (1/γ1)δR2(ψ2 + σ1)

(c) Unstable 1 - Stable Oscillation δR1 = A1(e
iψ1E1 + e−iψ1E

∗
1) MeδR1(ψ1) = δR1(ψ1 + σ1)

Lattice Resonance 2 - Exponential Growth δR2 = A2E2 MeδR2 = −γ2δR2

3 - Exponential Damping δR3 = A3E4 MeδR3 = −(1/γ2)δR3

(d) Unstable 1 - Exponential Growth δR1 = A1E1 MeδR1 = −γ1δR1

Double Lattice 2 - Exponential Growth δR2 = A2E2 MeδR2 = −γ2δR2

Resonance 3 - Exponential Damping δR3 = A3E3 MeδR3 = −(1/γ1)δR3

4 - Exponential Damping δR4 = A4E4 MeδR4 = −(1/γ2)δR4

mismatch onto pure normal modes according to:

δR(s) =





A1[E1(s)e
iψ1(s) + E∗

1(s)e
−iψ1(s)] +A2[E2(s)e

iψ2(s) + E∗
2(s)e

−iψ2(s)], cases (a) and (b),

A1[E1(s)e
iψ1(s) + E∗

1(s)e
−iψ1(s)] +A2E2(s) +A3E4(s), case (c),

A1E1(s) +A2E2(s) +A3E3(s) +A4E4(s), case (d),

(49)

where A` and ψ` are real-valued. This interpretation allows us to unambiguously define that pure mode phase advance
σ` as the change in ψ` as s advances over one lattice period Lp, thereby providing a concrete branch selection criteria
to relate the complex eigenvalues λn to the mode phase advances σ`. Alternatively, the correct branch for the mode
phase advance advance σ` can be selected by numerically integrating Eq. (38) with δP = 0 from the pure mode
initial conditions in Table I to calculate the orbit δR`(s) , and then Fourier transforming δrx(s) or δry(s) to identify
frequency components. A sufficient propagation distance should be taken to allow clear branch identification from
discretized transforms.

A specific initial envelope mismatch δR(si) can be resolved into normal mode projections according to Eq. (49) by
solving for the four (in total) real-valued amplitude A` and phase ψ`(si) parameters needed. Values of A` cosψ`(si) and
A` sinψ`(si) needed [ψ` = π for ` = 2, 3 in case (c) and for all ` in case (d)] can be found by matrix inversion of Eq. (49).
A pure mode of a given amplitude can be launched by setting one A` in Eq. (49) to the desired amplitude and setting
all other A` = 0 . The pure mode phase ψ` can be varied over 2π [except modes that do not have phases: 2 and 3 in case
(c) and all in case (d)] to sweep through all possible phase launches. Individual mode launching conditions are not, in
general, orthogonal [e.g., A1(E1e

iψ1 +E∗
1e

−iψ1) ·A2(E2e
iψ2 +E∗

2e
−iψ2) 6= 0 in case (a)]. However, in the stable case (a)

the two modes are almost orthogonal in a sense that lims→∞(1/s)
∫ s
0
A1[E1e

iψ1+E∗
1e

−iψ1 ]·A2[E2e
iψ2+E∗

2e
−iψ2 ] ds = 0.

For the special cases of continuous and periodic solenoidal focusing channels with a round beam equilibrium (εx =
εy = ε and rxm = rym = rm), the mode structure is simpler to analyze in terms of the decoupled equations (45) for
δr± = (δrx ± δry)/2 rather than the coupled equations (37) for δrx and δry. The transfer matrix Me that advances
δR = (δr+, δr

′
+, δr−, δr

′
−) through one lattice period is of block diagonal form with

Me(si + Lp|si) =

[
M+(si + Lp|si) 0

0 M−(si + Lp|si)

]
, (50)

where M±(si + Lp|si) are 2 × 2 symplectic matrices that can be independently analyzed for the stability of δR± =
(δr±, δr

′
±). The analysis for the normal modes and launching conditions supported by the uncoupled homogeneous

equations is analogous to the coupled case above. For each uncoupled equation for δr± we need only analyze a 2× 2
eigenvalue equation

M±(si + Lp|si) · En(si) = λ±En(si). (51)

Each of these reduced equations defines a pair of eigenvalues: λ+ and 1/λ+ for the δr+ equation, and λ− and 1/λ−
for the δr− equation. Stable modes with λ± on the unit circle correspond to[13]

1
2 |TrM±(si + Lp|si)| < 1. (52)

Possible reduced symmetry classes of the eigenvalues are illustrated in Fig. 5[22]. It follows that for a continuous or
periodic solenoidal focusing channel with a round beam equilibrium there can only be a single stable mode (phase
advance σ±) or two modes: one with pure exponential growth, and one with pure damping (both of the lattice
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resonance class with phase advance σ± = π). The situation in Fig. 4(b) corresponding to a confluent resonance
is excluded when the 4 × 4 coupled envelope equations reduce to two 2 × 2 decoupled equations. Initial envelope
perturbations in x and y can be projected onto the sum and difference perturbations at axial coordinate s = si as

δrx(si) = δr+(si) + δr−(si),

δr′x(si) = δr′+(si) + δr′−(si),

δry(si) = δr+(si) − δr−(si),

δr′y(si) = δr′+(si) − δr′−(si).

(53)

For pure mode launches, one takes

δr−(si) = 0 = δr′−(si), δr+(si) 6= 0 and/or δr′+(si) 6= 0 : breathing mode,
δr+(si) = 0 = δr′+(si), δr−(si) 6= 0 and/or δr′−(si) 6= 0 : quadrupole mode.

(54)

This launching condition is schematically plotted in Fig. 6. Note that the pure mode in δr+ with δr− = 0 has in-phase
perturbations with δrx = δry (breathing distortion), whereas a pure mode in δr− with δr+ = 0 has π out of phase
perturbations with δrx = −δry (quadrupole distortion). For this reason, pure decoupled modes in δr+ and δr− are
called “breathing” and “quadrupole” modes, respectively.
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FIG. 5: Two possible classes of eigenvalue symmetries for continuous focusing or periodic solenoidal focusing channels with
round beam equilibrium corresponding to stability in (a), and instability in (b).

In the limit of zero space-charge (Q→ 0), the perturbed envelope equations (37) decouple and the envelope modes
can be analyzed independently in the x- and y-planes. Therefore, eigenvalue cases for undriven modes reduce to
decoupled 2× 2 problems in the δrj and δr′j variables that are directly analogous to the cases discussed above for the
δr± and δr′± variables. A phase-amplitude analysis is employed in Appendix D to show that in this zero space-charge
limit the phase advance σej of oscillations in δrj over one lattice period is

σej = 2σ0j . (55)

This limit holds for any periodic focusing functions κj(s). An immediate consequence of Eq. (55) is that all coordi-
nates connected by linear transformation to the δrj and δr′j coordinates must have oscillations with the same phase
advance. Normal mode coordinates δR` of an envelope mode are related to the δrj and δr′j coordinates through linear
transformations specified by the eigenvectors as given in Table I. Therefore, the phase advance σ` of any normal



16

x

y

δrx

rm

rm

rm

δry= δrx

δry= -δrx

Breathing
Mode (+)
Quadrupole
Mode (-)

Quadrupole and
Breathing Modes

Matched Beam
Envelope

Quadrupole Mode (-)
Envelope

Breathing Mode (+)
Envelope

FIG. 6: Round, matched beam envelope with rx = ry = rm in a continuous or solenoidal focusing channel with pure breathing
(δrx = δry) and quadrupole (δrx = −δry) mode perturbations superimposed.

envelope mode for any transport channel with σ0j = σ0 and a symmetric beam with εx = εy must satisfy the zero
space-charge limit

lim
Q→0

σ` = 2σ0, (56)

regardless of the details of the focusing lattice. This limit provides a consistency check useful in practical calculations.
The result can be understood qualitatively as follows. All j-plane particle oscillations in the zero space-charge
limit beam have phase advance σ0j . Particles contributing to the perturbed beam edge in phase-space must have
contributions from positive and negative coordinates, leading to a envelope locus of particle orbits that oscillates
at double the particle oscillation frequency. A consequence of the limit (56) and the decoupling of the x− and y-
coordinates for zero space-charge is that envelope instabilities for zero space-charge can only occur for σ0 = π/2 or
σ0 = π. This can be understood as follows. Because the coordinates are decoupled, only lattice resonance instabilities
[see Fig. 5(b)] are possible in the x- and y-variables or in any other set of variables connected to these by linear
transformations. Therefore, for instability, the eigenvalues must lie on the real axis and limQ→0 σ` must be an integer
multiple of π. Equation (56) then establishes a necessary (but not sufficient) condition for instability is that σ0 be an
integer multiple of π/2, of which only π/2 and π are relevant to the analysis in this paper because we consider only
stable undepressed particle orbits with σ0 < π.

Another feature of the envelope normal modes is that they evolve with quadratic Courant-Snyder invariants in the
normal coordinate phase-space variables of the modes. These invariants are valid regardless of the details of the lattice
focusing functions κj(s) and can be interpreted as phase-space area measures in the normal coordinates of the envelope
modes. In Appendix E, a complete derivation of the envelope Courant-Snyder invariants is presented for the case of
envelope perturbations in continuous and solenoidal focusing channels with κx = κy ≡ κ and a symmetric matched
beam with εx = εy. In this case the normal coordinates of the envelope mode perturbations are the simple sum and
difference coordinates δr± = (rx ± ry)/2 which evolve according to Eq. (45) with zero driving terms. This situation
renders the derivation of the invariants directly analogous to standard treatments for decoupled single-particle orbits
and shows that

(
δr±
w±

)2

+
(
w′

±δr± − w±δr
′
±

)2
= const, (57)

where the w± are positive mode amplitude functions satisfying

w′′
+ + κ w+ +

2Q

r2m
w+ +

3ε2

r4m
w+ − 1

w3
+

= 0,

w′′
− + κ w− +

3ε2

r4m
w− − 1

w3
−

= 0.

(58)

For stable envelope oscillations, the amplitudes w± can be interpreted as scaled maximum excursions of pure envelope
modes. Analogous Courant-Snyder invariants exist also for the more complicated case of lattices with κx 6= κy,
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where the coupled envelope perturbations δrj evolve according to Eq. (37) with zero driving terms. In this case,
calculation of normal mode coordinates is much more complicated, and is treated in Appendix E by connecting the
formulation to a reference where the general coupling problem is analyzed. Although envelope mode Courant-Snyder
invariants increase our formal understanding of the mode structure, in practical applications the utility of these
invariants is limited because they require calculation of periodic amplitude functions in the lattice that are not, in
general, analytically tractable. However, for a given lattice and beam parameters, these amplitude functions can be
numerically calculated and the mode invariants can then be employed to improve understanding of mode evolution
and launching conditions in an analogous manner to standard treatments of single-particle dynamics.

Finally, the particular solution to Eq. (38) for driving perturbations with δP 6= 0 is complicated for periodic focusing
lattices. In Sec. III we construct the particular solution for the special case of continuous focusing where it can be
carried out directly. This special case may provide a partial guide to the much more complicated situation for periodic
focusing lattices which is not addressed in this paper. However, future studies of the particular solution will be aided
from the analyses of the homogeneous solutions for periodic solenoidal and quadrupole focusing lattices presented
in Secs. IV and V, because such solutions can aid in formulation of Green’s function type methods to construct the
particular solution.

III. ENVELOPE MODES IN CONTINUOUS FOCUSING CHANNELS

The continuous focusing model described in Sec. II B is straightforward to analyze and can serve as a good ap-
proximation to more realistic periodic focusing lattices when effects do not depend strongly on the periodic nature
of the applied focusing forces. In this regard, we find in Secs. IV and V that the continuous focusing model can pro-
vide good estimates of normal mode oscillation frequencies in periodic lattices when system parameters are far from
bands of parametric instability. Moreover, the continuous focusing model can be solved exactly for driven envelope
perturbations (δP 6= 0), thereby providing new insight into this previously unexplored situation.

A. Matched envelope solution

In a continuous focusing channel, κx = κy = k2
β0 = (σ0/Lp)

2 [see Eq. (27)]. In this situation, if εx = εy = ε, then
the matched beam envelope is round with rxm = rym ≡ rm = const, where rm satisfies the reduced envelope equation
of constraint

k2
β0rm − Q

rm
− ε2

r3m
= 0, (59)

or equivalently,

(
rm
Lp

)2

=
Q

2σ2
0

[
1 +

√
1 + 4

σ2
0ε

2

Q2L2
p

]
. (60)

From Eqs. (24) and (60), the depressed phase advance of a particle over an axial distance Lp is given by

σ =

√
σ2

0 − Q

(rm/Lp)2
=
εLp
r2m

. (61)

Equations (60) and (61) can be used to relate the space-charge depression σ/σ0 for the continuous focused beam,
which is independent of the specific choice of Lp, to the beam parameters as

k2
β0ε

2

Q2
=

σ2
0ε

2

Q2L2
p

=
(σ/σ0)

2

[1 − (σ/σ0)2]2
. (62)
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B. Envelope modes

Using the equilibrium condition in Eq. (61), the linearized equations (45) describing small amplitude elliptical beam
perturbations δr± = (δrx ± δry)/2 in the continuous focusing model can be expressed in scaled form as

L2
p

d2

ds2

(
δr+
rm

)
+ σ2

+

(
δr+
rm

)
= −σ

2
0

2

(
δκx
k2
β0

+
δκy
k2
β0

)
+ (σ2

0 − σ2)
δQ

Q
+ σ2

(
δεx
ε

+
δεy
ε

)
,

L2
p

d2

ds2

(
δr−
rm

)
+ σ2

−

(
δr−
rm

)
= −σ

2
0

2

(
δκx
k2
β0

− δκy
k2
β0

)
+ σ2

(
δεx
ε

− δεy
ε

)
,

(63)

where

σ+ ≡
√

2σ2
0 + 2σ2,

σ− ≡
√
σ2

0 + 3σ2.

(64)

The homogeneous solutions to Eq. (63) are trivially expressible as

δr±(s) = δr±(si) cos

(
σ±

s− si
Lp

)
+
δr′±(si)

σ±/Lp
sin

(
σ±

s− si
Lp

)
, (65)

where r±(si) and r′±(si) denote initial (s = si) values of the perturbed envelope coordinates. The ± normal mode
solutions to the homogeneous equation correspond to the well-known breathing (+) and quadrupole (−) modes with
phase advances σ+ and σ−[7]. Projections of the modes onto general initial envelope perturbations in x and y are
given by Eq. (53) and the pure mode launching conditions are presented in Sec. II F and are illustrated in Fig. 6.
The stability of these undriven oscillations is expected because the applied forces of the continuous focusing lattice
cannot change the energy of the oscillations. Variations of the normalized phase advances σ±/σ0 of the breathing and
quadrupole modes calculated from Eq. (64) are plotted in Fig. 7 as a function of σ/σ0 over the full range of space-
charge intensity 0 ≤ σ/σ0 ≤ 1. As expected for finite space-charge intensity with σ/σ0 < 1, the phase advance of the
breathing mode is always greater than the phase advance of the quadrupole mode. Also, consistent with Eq. (56), the
zero space-charge limit phase advances satisfy limσ→σ0 σ± = 2σ0. The homogeneous solutions for the normal envelope
modes given in Eq. (65) is also straightforward to derive using the matrix formulation in Sec. II F. This derivation is
carried out in Appendix F[23]. Results presented in Appendix F provide insight on the matrix formulation and may
prove useful as a conceptual guide for calculations with periodic lattices where explicit transformations to decoupled
variables are not possible.
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FIG. 7: Normalized phase advances σ+/σ0 and σ−/σ0 of the breathing and quadrupole modes plotted versus σ/σ0 for a
continuous focusing channel.

A Green’s Function method[13] based on the the homogeneous solutions (65) can be employed to calculate particular
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solutions of Eq. (63) in terms of an integral as

δr±(s)

rm
=

1

L2
p

∫ s

si

ds̃ G±(s, s̃)δp±(s̃),

δp+(s) = −σ
2
0

2

[
δκx(s)

k2
β0

+
δκy(s)

k2
β0

]
+ (σ2

0 − σ2)
δQ(s)

Q
+ σ2

[
δεx(s)

ε
+
δεy(s)

ε

]
,

δp−(s) = −σ
2
0

2

[
δκx(s)

k2
β0

− δκy(s)

k2
β0

]
+ σ2

[
δεx(s)

ε
− δεy(s)

ε

]
,

(66)

where

G±(s, s̃) =
1

σ±/Lp
sin

(
σ±

s− s̃

Lp

)
(67)

are Green’s functions for the breathing (+) and quadrupole (−) terms. The particular solutions in Eq. (66) satisfies
the initial conditions δr±(s = si) = 0 and δr′±(s = si) = 0, and the solution can be readily interpreted as a scaled
convolution of the driving perturbations onto the natural harmonic response of the normal modes. This is expected
because continuous focusing is spatially homogeneous.

Given specific initial mismatches (i.e., δrj and δr′j at s = si for j = x, y) and driving terms (i.e., δκj , δQ, and δεj),
Eqs. (65) and (66) for the homogeneous (denoted |h here) and particular (denoted |p here) solution components can be
applied to calculate the general evolution of the envelope perturbations δrx = δrx|h+δrx|p = (r+ +r−)|h+(r+ +r−)|p
and δry = δry |h + δry|p = (r+ − r−)|h + (r+ − r−)|p. To better understand the range of possible envelope evolutions
the driving terms induce, it is instructive to calculate the response to specific classes of driving perturbations that are
adiabatic, sudden, ramped, and harmonic.

First, in the adiabatic limit, variations of the driving terms δp±(s) are taken to be slow on the scale of the
quadrupole mode wavelength 2πLp/σ−, which is longer than the breathing mode wavelength 2πLp/σ+ for σ/σ0 < 1.
In this situation, Eqs. (63) and (64) can be employed to express the particular solutions as

δr+
rm

=
δp+

σ2
+

= −
[
1

2

1

1 + (σ/σ0)2

]
1

2

(
δκx
k2
β0

+
δκy
k2
β0

)
+

[
1

2

1 − (σ/σ0)
2

1 + (σ/σ0)2

]
δQ

Q
+

[
(σ/σ0)

2

1 + (σ/σ0)2

]
1

2

(
δεx
ε

+
δεy
ε

)
,

δr−
rm

=
δp−
σ2
−

= −
[

1

1 + 3(σ/σ0)2

]
1

2

(
δκx
k2
β0

− δκy
k2
β0

)
+

[
2(σ/σ0)

2

1 + 3(σ/σ0)2

]
1

2

(
δεx
ε

− δεy
ε

)
.

(68)

The particular solutions (68) can also be derived by partial integration of Eq. (66) and neglecting the terms con-
taining δp′±. Coefficients of the driving terms (δκx/k

2
β0 ± δκy/k

2
β0)/2, δQ/Q, and (δεx/ε± δεy/ε)/2 in the adiabatic

solution (68) (i.e., the terms in the square brackets) are plotted as a function of space-charge depression σ/σ0 in
Fig. 8. These curves describe the relative strength of the response in δr± to different classes of adiabatic driving
perturbations as a function of space-charge intensity.

Next, to analyze the opposite limit of driven perturbations δp±(s) with sudden changes, we take

δp±(s) = δ̂p±Θ(s− sp). (69)

Here, Θ(x) is the Heaviside step function defined by Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0, s = sp is the axial
coordinate where the perturbations jump, and

δ̂p+ = −σ
2
0

2

[
δ̂κx
k2
β0

+
δ̂κy
k2
β0

]
+ (σ2

0 − σ2)
δ̂Q

Q
+ σ2

[
δ̂εx
ε

+
δ̂εy
ε

]
,

δ̂p− = −σ
2
0

2

[
δ̂κx
k2
β0

− δ̂κy
k2
β0

]
+ σ2

[
δ̂εx
ε

− δ̂εy
ε

] (70)
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FIG. 8: Coefficients in Eq. (68) describing the strength of adiabatic limit envelope response terms to classes of driving pertur-
bations are plotted as a function of σ/σ0. Coefficients occurring in the sum (r+) and difference (r−) particular solutions are
plotted separately in (a) and (b).

are constant amplitudes of the sudden, step-perturbations defined according to Eq. (66) with δQ → δ̂Q = const for
the perveance perturbation, etc. For these step-function perturbations, Eq. (66) can be integrated, and the response
in the particular solutions for δr± can be expressed in the same form as the adiabatic solutions with the following
substitutions in Eq. (68):

δp± → δ̂p±

[
1 − cos

(
σ±

s− sp
Lp

)]
Θ(s− sp). (71)

The response to other sudden perturbations δp±(s) can be calculated by superimposing perturbations of the form in
Eqs. (69) and (70).

Comparing the adiabatic solutions in Eq. (68) with the sudden solutions given by Eqs. (68) and (71), note that the
sudden response is oscillatory with periods 2πLp/σ± in the solutions for δr± rather than steady as in the adiabatic

case. For the same driving perturbation amplitude [e.g., δQ(s) = δ̂Q for s >∼ sp for the adiabatic perturbation],
the excursions of the envelope oscillations for sudden perturbations oscillate between zero and twice the adiabatic
excursion. This characteristic response to a step-function perturbation is illustrated in Fig. 9 for the evolution of

δr+/rm resulting from a pure emittance perturbation with (δ̂εx/ε+ δ̂εy/ε)/2 > 0. The dashed line shows the adiabatic
response for a slowly varied perturbation that achieves the same emittance change as the sudden perturbation applied

at s = sp {i.e., an adiabatic perturbation with [δεx(s)/ε+ δεy(s)/ε]/2 = (δ̂εx/ε+ δ̂εy/ε)/2 for s >∼ sp}.
Another instructive example is the envelope response to linear ramp driving perturbations. In this case we take

δp±(s) = δ̂p′±(s− sp)Θ(s− sp). (72)

Here, δ̂p′± is a constant that describes the ramp perturbations applied at axial coordinate s = sp and is defined by

replacing δ̂Q→ δ̂Q′ with δ̂Q′ = const in Eq. (70) for the perveance perturbation, etc. For these ramp perturbations,
the particular solutions given by Eq. (66) can be expressed in the same form as the adiabatic solutions with the
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following substitutions in Eq. (68):

δp± → Lp
σ±

δ̂p′±

[
σ±

s− sp
Lp

+ sin

(
σ±

s− sp
Lp

)]
Θ(s− sp). (73)

Comparing the solutions for adiabatic, sudden, and linear ramped driving perturbations given by Eqs. (68)–(73),
the response to the ramped perturbations can be interpreted as having both adiabatic and “sudden” oscillatory
components given by the first and second terms in Eq. (73), respectively. The particular solution for the ramped
perturbation is illustrated schematically in Fig. 10 for the evolution of δr+/rm in response to a pure emittance

perturbation with (δ̂ε′x/ε+ δ̂ε
′
y/ε)/2 > 0. For s� sp, the response is dominated by the adiabatic component, whereas

for s >∼ sp, the sudden oscillatory component with period 2πLp/σ+ can be significant.
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FIG. 10: Envelope response δr+(s) for a linear ramp driving emittance perturbation with (δ̂ε′x/ε+ δ̂ε′y/ε)/2 > 0.

Finally, we analyze harmonic driving perturbations in δp±(s) by taking

δp±(s) = δ̂p± exp(iks). (74)

Here, δ̂p+ are complex constants defined from δp±(s) that are of the same form as given in Eq. (70) and represent
the amplitude of the harmonic perturbations, and k = const is the complex wavenumber of the perturbations. The
physical perturbations are represented by the real part of the expressions in Eq. (74). Driving perturbations with pure
harmonic oscillations can be modeled by taking k real, pure exponential growing or damping by taking k imaginary,
and damped or growing oscillations by taking k complex. Superpositions of harmonic perturbations of the form in
Eq. (74) can be employed to recover previous examples analyzed. For these harmonic perturbations, the particular
solutions (66) can be expressed in the same form as the adiabatic solution by taking the real part of the following
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substitutions in (68):

δp± → δ̂p±

[
cos(σ±s/Lp) + i(kLp/σ±) sin(σ±s/Lp) − exp(iks)

(kLp/σ±)2 − 1

]
. (75)

For k pure imaginary the particular solutions given by Eqs. (68) and (75) lead to oscillatory solutions with damping
(Im k > 0) or growth terms (Im k < 0). For |Re k| sufficiently removed from σ±/Lp, the response is pure oscillatory
(Im k = 0), or oscillatory with growth or damping terms (Im k 6= 0). When |Re k| ' σ±/Lp, the response has classic
linear resonance growth with

lim
k→σ±/Lp

cos(σ±s/Lp) + i(kLp/σ±) sin(σ±s/Lp) − exp(iks)

(kLp/σ±)2 − 1
=
i

2
[sin(σ±s/Lp) − (σ±s/Lp) exp(σ±s/Lp)] . (76)

Linear superposition of the specific examples above provides insight into the range of envelope responses to small-
amplitude driving perturbations formally given by Eq. (66). Several conclusions can be drawn from these results. First,
driving perturbations that are fast on the scale of the breathing and quadrupole envelope mode phase advances σ± are
more dangerous than slow changes because they can result in twice the beam envelope excursion for equal amplitude
changes in the driving terms. Second, oscillatory driving perturbations of small amplitude are not problematic unless
the driving terms have frequency components with phase advances close to the breathing or quadrupole mode phase
advances σ±. This simple continuous focusing analysis of driven perturbations should help guide the more complicated
situation in periodic focusing lattices. However, caution must be employed in application of these results, particularly
when making higher-order extrapolations. For example, if a periodic focusing perturbation with δκx = −δκy is
taken, one might expect to recover net focusing because this perturbation corresponds to a superimposed alternating
gradient quadrupole lattice. However, from Eq. (66), such a choice has no projection on the breathing mode to linear
order. A recent analytical study of matched beam envelopes in periodic quadrupole focusing channels suggest how
such higher-order effects might be more accurately modeled but are beyond the scope of the present analysis[18].

IV. ENVELOPE MODES IN SOLENOIDAL FOCUSING CHANNELS

A beam with an elliptical cross-section envelope and zero total canonical angular momentum {i.e., Pθ = 〈xy′−yx′〉⊥+
[qBz/(2mγbβbc)]〈x2 + y2〉⊥ = 0 } that is focused in a solenoidal transport channel by a periodic solenoidal magnetic
field B(s) = −[B′

z(s)/2](xx̂+yŷ)+Bz(s)ẑ can be analyzed with the envelope equations (4), provided that we take the
focusing strength to be κx = κy ≡ κ = [qBz/(2mγbβbc)]

2 and interpret the analysis as applying in a local (s-varying)
rotating Larmor frame. This correspondence is developed in Appendix B by deriving a self-consistent KV distribution
describing elliptical beams with Pθ = 0 in a solenoidal focusing channel. The derivation identifies correspondences
needed to apply Eq. (4) to this situation including replacements for the laboratory-frame rms emittances εx and εy in
terms of Larmor-frame invariant emittance measures. In the context of interpreting the envelope equations (4) with
appropriate Larmor-frame replacements, the formalism in Sec. II F can be applied to analyze elliptical perturbations
in the beam envelope for solenoidal transport channels. For simplicity of presentation, we carry out analysis in this
section without making explicit reference to the Larmor frame. However, the Larmor frame transformations presented
in Appendix B must be applied to project nonaxisymmetric normal modes (δrx 6= δry) into the stationary laboratory
frame to view the evolution there — a distinction not made in previous work on envelope modes in solenoidal transport
channels[2, 7].

In this section we explore normal mode envelope perturbations (δP = 0) in a periodic solenoidal transport channel
with piecewise constant κ(s). Physical solenoidal focusing lattices with fringe fields associated with continuously
varying κ(s) can be approximated by the model with piecewise constant κ(s) using the equivalency procedures
developed in Appendix A. Mode structures and launching conditions are classified and instabilities are parametrically
mapped using the decoupled mode formulation in Sec. II F. In addition to elliptical beam perturbations with zero
beam canonical angular momentum (Pθ = 0), results for axisymmetric perturbations (δrx = δry) can also be applied
to beams with nonzero canonical angular momentum using the correspondences derived in Appendix B. Results
in this section can also be applied without transformation to idealized beam models where a stationary, partially
neutralizing charge distribution produces the specified focusing function κ(s). Driving perturbations with δP 6= 0 are
not analyzed.

A. Matched envelope solution

We consider the case of a periodic, matched solution (rx = rxm and ry = rym) to the the envelope equations (4)
with equal emittances ε = εx = εy and a round beam envelope rxm = rym = rm. A hard-edge focusing lattice
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is taken with κx(s) = κy(s) ≡ κ(s) piecewise constant as illustrated in Fig. 2(b) with lattice period Lp, solenoid
strength κ̂ = const, and occupancy η. The matched envelope solutions are parameterized by Lp, σ0, σ/σ0, and η.
Numerical solutions are plotted for one lattice period in Fig. 11 in terms of the scaled envelope radius [rm/(

√
2QLp)]

versus normalized axial coordinate (s/Lp) for fixed undepressed single-particle phase advance σ0, and values of σ/σ0.
Solutions for large and small occupancies are contrasted in (a) and (b) and symmetry points are indicated on the plot.
Comparing (a) and (b), observe that the radial extent of the periodic flutter of the beam envelope varies strongly with
the solenoid occupancy η. This strong flutter variation is expected because the limit η → 1 corresponds to continuous
focusing in the Larmor frame with rm = const, whereas the limit η → 0 corresponds to focusing with thin-lens kicks
(see Appendix G) and maximal flutter motion. The single-particle phase advances σ0 and σ are interpreted in the
Larmor frame.
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FIG. 11: Scaled matched beam envelope rm/(
√

2QLp) versus normalized axial coordinate s/Lp for one period of a hard-edge
solenoidal focusing channel in Fig. 2(b). Solutions are shown for σ0 = 80◦ and values of σ/σ0 indicated for occupancies η = 0.75
and η = 0.25 in (a) and (b), respectively.

The analysis in Appendix B shows that the matched, round beam envelope with rxm = rym = rm described above
can be applied to model beams with finite canonical angular momentum Pθ = 〈xy′−yx′〉⊥+[qBz/(2mγbβbc)]〈x2+y2〉⊥
in the range −1 < 2Pθ/ε < 1 if the emittance ε is replaced by the Larmor invariant emittance according to ε2 →
ε2x−4〈r2θ′〉⊥+4P 2

θ = const to include the defocusing effect of Pθ 6= 0. The matched beam parameterization employed
with Lp, σ0, σ/σ0, and η is convenient to understand envelope stability properties in solenoidal focusing and place
results in a form directly comparable to those obtained for quadrupole focusing (see Sec. V). However, in calculating
perveance (or current) limits, the periodicity of the lattice plays a less direct role for solenoidal focusing than for
quadrupole focusing[17, 18]. For a quadrupole lattice alternating focusing and defocusing optics in the period provide
net focusing that cannot exist without the regular interchange of focusing and defocusing within the period, whereas
in solenoid lattices all optics are focusing and net focusing exists even in the limit of full occupancy (η = 1) where
there is no lattice period.
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B. Normal modes

Normal mode solutions for elliptical perturbations (δrx 6= δry) about the round, matched envelope solutions
described in Sec. IV A are numerically analyzed using the formulation in Sec. II F. For the special case consid-
ered of an axisymmetric matched envelope the reduced eigenvalue formulation with decoupled perturbed envelopes
δr± = (δrx ± δry)/2 is employed to resolve the perturbations into breathing (+) and quadrupole (−) modes. This
reduced problem is equivalent to numerically calculating eigenvalues λn of the coupled 4-dimensional matrix equa-
tion (47) to characterize the stability properties of the homogeneous equation (38) with κx = κy = κ, εx = εy = ε,
and zero driving perturbations (δP = 0). Eigenvalues are calculated for specified values of η and ranges of σ0 and
σ/σ0 to map out mode properties including mode phase advances σ± and growth factors γ± associated with broad
bands of parametric instability. Results we obtained are displayed in Figs. 12–14.

We find that bands of parametric instability with γ+ > 1 and γ− > 1 for the breathing and quadrupole modes
do not overlap. Therefore, in terms of the symmetry classes presented in Fig. 4, eigenvalues can only fall into class
(a) [stability] or (c) [lattice resonance instability], and class (d) [double lattice resonance instability] does not occur.
As shown in Sec. II F, eigenvalues falling into class (b) [confluent resonance instability] are not possible because
the breathing and quadrupole modes are decoupled for solenoidal focusing. Breathing and quadrupole mode phase
advances σ± and growth factors γ± are contoured in Fig. 12 as a function of σ0 and σ/σ0 for σ0 ∈ (0, 180◦) and the
full range of space-charge depression σ/σ0 ∈ (0, 1]. Results are contrasted for occupancies η = 0.75 and η = 0.25 in
columns (a) and (b). Growth factors of both the breathing (γ+ > 1) and quadrupole (γ− > 1) modes are superimposed
on the same plots because the bands do not overlap, and growth factors of the corresponding damped modes are not
plotted because damping factors are given by 1/γ± of the growing mode [see Fig. 4(c) and Table I]. The growth
factor contours are restricted to σ0 ∈ (90◦, 180◦) because no instability is found for σ0 < 90◦. These plots help clarify
regions of parametric envelope instability observed in previous studies[4, 7, 20]. In the present study, modes are
unambiguously identified over the practical range of machine parameters and previous errors in branch calculation
are corrected.

To better illustrate the mode structures presented in Figs. 12, in Fig. 13 we plot the mode phase advances and
growth factors for fixed σ0 and η as a function of σ/σ0. Curves shown correspond to the vertical dashed lines on the
contour plots in Fig. 12. Complex plots of the eigenvalues λ± relative to the unit circle are superimposed at several
locations to further illustrate the eigenvalue structure of the modes and the symmetry class of the instability bands.
Individual mode branches for the breathing and quadrupole modes are identified outside of regions of instability using
the formulation described in Sec. II F and branches are continuously connected across bands of parametric instability.
As expected for finite space-charge (σ/σ0 < 1), the in-phase oscillations of the breathing mode with δrx = δry have
higher phase advance σ+ than the phase advance σ− of the out-of-phase oscillations of the quadruple mode with
δrx = −δry. Continuous model results superimposed are calculated from Eq. (64) using the single-particle phase
advances σ0 and σ derived from the periodically focused, matched beam. Far from instability bands, the continuous
formulas provide accurate estimates of the mode phase advances[7]. Curves for the continuous and periodic focused
calculations of σ± almost overlay for σ0 = 80◦ and agreement further improves for lower values of σ0. Analysis in
Sec. II F [see Eq. (56)] shows that the zero space-charge limit Q→ 0 corresponds to stable breathing and quadrupole
mode oscillations with

lim
σ→σ0

σ± = 2σ0,

lim
σ→σ0

γ± = 1.
(77)

These limiting values are indicated on the figure to provide a partial check of results. For another check of results,
mode eigenvalues are analytically calculated in Appendix G in the thin-lens limit (η → 0 at fixed σ0) for a beam with
full space-charge depression (σ = 0). Phase advances and growth rates calculated from this analysis are indicated in
Fig. 13(b). The small discrepancies evident are traceable to sensitivities of results on the solenoid occupancy η.

To better understand sensitivities on the solenoid occupancy, variations of the breathing and quadrupole mode
phase advances and growth factors with η are illustrated in Fig. 14. From this plot and Fig. 12, note that instability
bands get wider and mode growth rates stronger with decreasing η. Limit points indicated on the plots come from
analytical calculations of the band structure in the thin-lens limit (η → 0) at full space-charge depression presented
in Appendix G and Eq. (77).

The lattice resonance instability bands have been identified as a half-integer parametric resonance between the
envelope mode oscillation frequencies and the lattice[7]. This suggests that the location of the envelope bands can be
crudely estimated using resonance conditions based on the breathing and quadrupole mode frequencies σ± derived

from the continuous model with σ+ =
√

2σ2
0 + 2σ2 and σ− =

√
σ2

0 + 3σ2 [see Eq. (64)] as σ± = π, or equivalently
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FIG. 12: Contours of (upper row) breathing and (middle row) quadrupole mode phase advances (σ±) and (bottom row) growth
factors (γ±) as a function of σ0 and σ/σ0 for a solenoidal focusing channel. Results are shown for occupancies η = 0.75 and
η = 0.25 in columns (a) and (b). In the upper and middle rows, black contour lines correspond to σ± = 10◦, 20◦, 30◦, · · ·
and colors vary continuously with changes in σ± (bands of instability with σ± = 180◦ are marked in solid red for emphasis).
In the lower row, values of ln(γ±) with γ± > 1 are labeled with continuously varying colors as indicated in the key. Identical
color schemes are used in columns (a) and (b) to measure mode phase advances and growth factors. Vertical dashed lines in
the plots for η = 0.25 correspond to the cross-section plots in Fig. 13.

with σ0 and σ measured in degrees,
√

2σ2
0 + 2σ2 = 180◦ (78)

for the breathing mode, and
√
σ2

0 + 3σ2 = 180◦ (79)
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FIG. 13: Phase advance (σ±) and growth factors (γ±) of the breathing and quadrupole envelope modes versus σ/σ0 for a
solenoidal focusing channel with occupancy η = 0.25 for σ0 = 80◦ and σ0 = 115◦ in columns (a) and (b). Continuous focusing
model predictions for σ± are superimposed (dashed curves). Red Xs mark analytical results in the zero space-charge limit and
cyan Xs mark thin-lens limit (η → 0) analytical results with σ/σ0 = 0. Vertical dashed lines correspond to locations of plots
of complex eigenvalues λ± placed above. Red boxes denote expanded views.

for the quadrupole mode. Comparing to Fig. 12, these resonance formulas roughly predict band locations, but corre-
spond more closely to the lower thresholds in σ0 than the maximum growth factor locations as might be anticipated.
Moreover, the formulas cannot capture the broad parametric nature of the instability or changes in band structure
with solenoid occupancy η. In order to provide better guidance for the band locations in practical applications,
parametric data was employed to calculate curve fits for the instability thresholds. We find that instability threshold
data can be roughly fit by curves in σ0 and σ corresponding to: centered elliptical curves with

σ2 + fσ2
0 = (90◦)2(1 + f) (80)

for the left- and right-boundary curves of the breathing mode band, a curve with form

σ/σ0 + g
σ0

90◦
= 1 + g (81)

for the left-boundary of the quadrupole mode band, and a line with

σ + gσ0 = 90◦(1 + g) (82)

for the right-boundary of the quadrupole mode band. In Eqs. (80)–(82), σ0 and σ are measured in degrees, f and
g are undetermined functions of η. Based on the analysis in Sec. II F, the boundary curves in Eqs. (80)–(82) are
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the zero space-charge limit and cyan Xs mark thin-lens limit (η → 0) analytical results with σ/σ0 = 0.

constrained to contain the limit point σ = σ0 = 90◦. Consistent with containing this point, Eq. (81) corresponds
to the most general centered ellipse in σ0 and σ, and Eqs. (81) and (82) are the most general lines in σ0 and σ/σ0,
and σ0 and σ, respectively. To account for weak variations from these forms in σ0 and σ while containing the point
σ = σ0 = 90◦, we also take f and g to vary linearly with σ0 in addition to having dependence on η. Using threshold
data with σ0 ∈ [96◦, 174◦] and η ∈ [0.1, 0.7], we find that the breathing band threshold are fit by the elliptic formula
in Eq. (80) with

f(η, σ0) =

{
1.113− 0.413η+ 0.00348σ0, left-edge,

1.046 + 0.318η+ 0.00410σ0, right-edge,
(83)

where average and maximum deviations between the threshold data and the fit formula are ∼ 3◦ and ∼ 6◦ for the
left-edge and ∼ 4◦ and ∼ 6◦ for the right-edge. Similarly, using the threshold data over the same range for the
quadrupole band with the formulas in Eqs. (81) and (82), we obtain the fits

g(η) =

{
1, left-edge,

0.227 + 0.173η, right-edge.
(84)

where average and maximum deviations between the threshold data and the fit formulas are ∼ 5◦ and ∼ 8◦ for the
left-edge and ∼ 2◦ and ∼ 3◦ for the right-edge. Here, we have neglected weak η and σ0 variation in the formula
for the left-edge of the band and we have neglected variation in σ0 on the right-edge to produce formulas of similar
accuracy to the breathing band. Methods employed by Lee and Briggs[17] to analytically estimate breathing mode
band widths for a focusing function κ(s) with a constant and sinusoidally varying terms may be generalizable using
Fourier expansions of both the piecewise constant lattice focusing function κ(s) employed here and the matched
envelope to calculate thresholds of the decoupled breathing and quadrupole bands. Future research on this topic is
desirable to obtain more reliable band threshold estimates and to better understand the structure of the envelope
instabilities.
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As discussed in Sec. II F, the breathing and quadrupole modes are decoupled, and consequently pure modes can
be simply launched at axial coordinate s = si by taking initial conditions as given in Eqs. (53) and (54). This
launching condition is illustrated in Fig. 6 and corresponds to cases (a) and (c) in Table I for stability and instability,
respectively. For the case of instability, Table I and Figs. 4 and 5 show that certain subsets of initial conditions with
either breathing or quadrupole symmetry can project onto pure exponentially damping or growing modes. Mode
phase-space invariant (see Sec. II F and Appendix E) can be employed analogously to Courant-Snyder invariants
in single-particle dynamics to efficiently launch stable breathing or quadrupole modes with specific amplitudes and
phases and calculate maximum mismatch excursions at any location in the lattice period.

As a practical matter, note in the parametric plots of the bands of mode instability presented in Fig. 12 that the
breathing mode band is encountered before the quadrupole band when approaching from lower values of σ0. Therefore
the breathing mode instability is generally of greater importance in the selection of machine operating points. Finally,
it should be stressed that the breathing mode results presented can be interpreted directly as being laboratory frame,
but the quadrupole mode rotates according to the local Larmor frame transformations presented in Appendix B.
Breathing mode stability results presented are also valid for beams with finite canonical angular momentum Pθ 6= 0,
whereas quadrupole mode results are valid only for Pθ = 0.

V. ENVELOPE MODES IN QUADRUPOLE DOUBLET FOCUSING CHANNELS

In this section, we explore normal mode envelope perturbations (δP = 0) in alternating gradient quadrupole focusing
channels. Driving perturbations with δP 6= 0 are not analyzed. Results are presented in analogous manner to Sec. IV
for solenoidal focusing. However, in contrast to Sec. IV, all results are laboratory frame and can be interpreted
directly without transformation. The beam considered in this section has zero total canonical angular momentum
Pθ = 〈xy′ − yx′〉⊥ = 0 and the focusing channel has no skew couplings so that the envelope equations (4) apply (see
Appendix B). Piecewise constant focusing strength κx(s) = −κy(s) ≡ κq(s) is taken and results can be applied to
realistic focusing channels with continuously varying κq(s) using the equivalency procedures developed in Appendix
A.

A. Matched envelope solution

We consider the case of a periodic, matched solution (rj = rjm for j = x, y) to the the envelope equations (4) with
equal emittances εx = εy = ε. A hard-edge focusing lattice is assumed with piecewise constant κx(s) = −κy(s) ≡ κq(s)
as illustrated in Fig. 2(c) with lattice period Lp, quadrupole strength κ̂q = const, occupancy η, and syncopation factor
α. The matched envelope solutions are parameterized by Lp, σ0, σ/σ0, η, and α. Numerical solutions are plotted
for one lattice period in Fig. 15 in terms of scaled envelope radii [rj/(

√
2QLp)] versus normalized axial coordinate

(s/Lp) for α = 1/2 [FODO channel, (a)] and α = 0.1 [strong syncopation, (b)]. In these plots, the undepressed single-
particle phase advance σ0 is fixed, and the solution is shown for values of σ/σ0. Approximate, analytical solutions
can also be constructed using the perturbative formulation of Lee[18]. Symmetry points are indicated on the plot.
Contrasting (a) and (b), observe that syncopation with α 6= 1/2 reduces the symmetry of the matched envelope but
that maximum excursions change little. In contrast to solenoidal transport channels, at fixed σ0, little variation in
matched envelope structure is observed with changes in quadrupole occupancy η. The value of occupancy employed
η = 0.6949 corresponds to the hard-edge equivalent value of a FODO electric quadrupole lattice in the High Current
Transport Experiment (HCX) at the Lawrence Berkeley National Laboratory[24, 25]. This equivalence prescription is
derived as an example application in the general discussion of fringe field equivalent models presented in Appendix A.
Negligible difference in the structure of the matched beam envelope is observed between the actual focusing function
κq(s) derived from the linear applied field components of the physical lattice and the hard-edge equivalent model with
piecewise constant κq(s).

B. Normal modes

Normal mode solutions are numerically analyzed using the formulation in Sec. II F. For the matched beam solutions
described in Sec. V A, mode perturbations are not simply decoupled by sum (+) and difference (−) coordinates
δr± = (rx ± ry)/2 as in the case of continuous and solenoidal focusing channels analyzed in Secs. III and IV, and we
employ the full coupled eigenvalue formulation based on Eq. (38) with κx = −κy = κq, εx = εy = ε, and zero driving
perturbations (δP = 0). Eigenvalues are calculated for specified values of η and α and ranges of σ0 and σ/σ0 to map
out mode properties. Results we obtained are displayed in Figs. 16–20. Although sum and difference perturbations
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FIG. 15: Scaled matched beam envelope rj/(
√

2QLp) versus normalized axial coordinate s/Lp for one period of a hard-edge
quadrupole focusing channel in Fig. 2(c). Solutions are shown for σ0 = 80◦, η = 0.6949, and values of σ/σ0 indicated for
syncopation factors α = 1/2 (FODO) and α = 0.1 in (a) and (b), respectively.

are not decoupled in quadrupole transport channels, we find that the pure modes have properties analogous to the
sum (i.e, “breathing”) and difference (i.e., “quadrupole”) modes studied in continuous and solenoidal channels. We
label envelope modes in the quadrupole focusing channel that in stable regions degenerate into quadrupole- and
breathing-like perturbations with B and Q, respectively, (e.g. σ` with ` = B,Q for the mode phase advances) to
avoid confusion with the purely decoupled sum and difference modes analyzed in Secs. III and IV.

The “breathing” and “quadrupole” mode phase advances σB and σQ and growth factors γB and γQ are contoured in
Fig. 16 as a function of σ0 and σ/σ0 for σ0 ∈ (0, 180◦) and σ/σ0 ∈ (0, 1]. Results are shown for quadrupole occupancy
η = 0.6949 and syncopation factors α = 1/2 (FODO lattice) and α = 0.1 in columns (a) and (b) to contrast a
symmetrical FODO lattice with the case of strong syncopation. Growth factors of both the breathing (γB > 1)
and quadrupole (γQ > 1) modes are superimposed on the same plots because the bands do not overlap, and growth
factors of the corresponding damped modes are not plotted because damping factors are given by 1/γ` of the growing
mode [see Fig. 4 and Table I]. No instability bands are found for σ0 < 90◦ so the growth contours are restricted to
σ0 ∈ (90◦, 180◦). In terms of the symmetry classes presented in Fig. 4, eigenvalues fall into class (a) when there is
stability and class (b) [confluent resonance] or (c) [lattice resonance] when there is instability. The confluent resonance
involves locking of the breathing and quadrupole modes and occurs for both FODO and syncopated (α 6= 1/2) lattices,
while the lattice resonance is observed only for syncopated lattices (see the thin band to the left of confluent resonance
band on the right column of the figure) which have a lesser degree of symmetry. The lattice resonance also only appears
for the breathing mode. As for solenoidal transport, the breathing mode instabilities appear to be more dangerous
for practical, intense beam transport lines because it is encountered first when increasing σ0 from small values. These
plots help clarify regions of parametric envelope instability observed in previous studies of FODO lattices[4, 21] and
a syncopated quadrupole lattice[7]. The thin band associated with the lattice resonance for syncopated quadrupole
lattices was previously overlooked. Also, mode branches are unambiguously identified, errors in branch calculations
are corrected, and parametric sensitivities and mode properties are throughly characterized over the range of practical
machine parameters.

To better illustrate the mode structures presented in Fig. 16, in Fig. 17 we plot the mode phase advances and
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FIG. 16: Contours of (upper row) breathing and (middle row) quadrupole mode phase advances (σB,σQ) and (bottom row)
growth factors (γB,γQ ) as a function of σ0 and σ/σ0 for a quadrupole focusing channel with occupancy η = 0.6949. Results
are shown for syncopation factors α = 1/2 (FODO) and α = 0.1 in columns (a) and (b). In the upper and middle rows, black
contour lines correspond to σ` = 10◦, 20◦, 30◦, · · · for ` = B,Q, colors vary continuously with changes in σ`, and thresholds
of instability bands are marked with red lines. In the bottom row, values of ln(γ`) with γ` > 1 are labeled with continuously
varying colors as indicated in the key. Identical color schemes are used in columns (a) and (b) to measure mode phase advances
and growth factors. Vertical dashed lines in the plots of α = 0.1 correspond to cross-section plots in Fig. 17.

growth factors for fixed σ0, α, and η as a function of σ/σ0. Curves shown correspond to the vertical dashed lines
on the contour plots in Fig. 16. Complex plots of the eigenvalues λn relative to the unit circle are superimposed
at several locations to further illustrate the eigenvalue structure of the modes. Individual mode branches for the
breathing and quadrupole modes are identified outside of regions of instability using the formulation described in
Sec. II F and branches are continuously connected across bands of parametric instability. The phase advance of the
breathing mode σB is larger than the quadrupole mode σQ for finite space-charge (σ/σ0 < 1). Continuous focusing
model predictions shown for the sum (i.e., breathing) and difference (i.e., quadrupole) mode phase advances σ+ and σ−
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are derived from Eq. (64) using the single-particle phase advances σ0 and σ calculated from the periodically focused,
matched beam. Far from bands of instability, σ+ and σ− provide accurate estimates for the numerically calculated
breathing and quadrupole mode phase advances σB and σQ[7]. This correspondence helps justify the identification
of the mode branches being breathing- and quadrupole-like. The continuous focusing and alternating gradient model
phase advances are in better agreement for lower values of σ0 and weaker syncopation (α→ 1/2). Analysis in Sec. II F
[see Eq. (56)] shows that the zero space-charge limit Q → 0 corresponds to stable breathing and quadrupole mode
oscillations with

lim
σ→σ0

σ` = 2σ0,

lim
σ→σ0

γ` = 1.
(85)

These limiting values are indicated on the figure to provide a partial check.
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FIG. 17: Phase advance (σB and σQ) and growth factors (γB and γQ) of the breathing and quadrupole envelope modes versus
σ/σ0 for a quadrupole focusing channel with occupancy η = 0.6949, syncopation factor α = 0.1, and σ0 = 80◦ and σ0 = 115◦

in columns (a) and (b). Continuous focusing model predictions for σ± are superimposed on the phase advance plots (dashed
curves). Red Xs mark analytical results in the zero space-charge limit. Vertical dashed lines correspond to locations of plots of
complex eigenvalues λn placed above. Red boxes denote expanded views.

For FODO lattices with the same values of the particle phase advances σ0 and σ, little variation is observed in
envelope mode structure with changes in quadrupole occupancy η. On the other hand, significant variations can occur
in lattices with strong syncopation (α far from 1/2). To illustrate this point, the mode phase advances σB and σQ and
growth factors γB and γQ are plotted in Fig. 18 for several values of η. Results are contrasted in columns (a) and (b) for
a FODO lattice (α = 1/2) and a strongly syncopated lattice with α = 0.1. The small variations presented in Fig. 18(a)
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illustrate the insensitivity of the mode structure to changes in η for a FODO lattice. The location and strength of
the confluent resonance instability band changes only weakly with η. Even smaller variations are observed in FODO
lattices when making comparisons for σ0 farther from the first instability band or when comparing results for the
hard-edge lattice taken here with full fringe field models calculated from physical lattices (see Appendix A). Results
from eigenvalues analytically calculated in Appendix G for the thin-lens limit (η → 0 at fixed σ0) of a FODO lattice
with a fully space-charge depressed beam (σ = 0) are indicated in Fig. 18(a). The good agreement with the thin-lens
results is traceable to mode structure in a FODO lattice being relatively insensitive to the solenoid occupancy η. For
FODO lattices, σ0 and σ are the most important parameters, whereas shape parameters characterizing the occupancy
and fringe components of the focusing field are of much lesser importance. In contrast, for strong syncopation, it is
evident from Fig. 18(b) that the mode structure can vary significantly with occupancy η. This strong variation is
correlated to the existence of the second band of parametric instability (lattice resonance) for the breathing mode,
which was shown in Sec. IV to vary strongly with η in a solenoidal focusing lattice. Observe from the α = 0.1 plots in
Fig. 18(b) that the instability band of the lattice resonance is weakly expressed compared to the confluent resonance
band for higher lattice occupancies η, whereas it is strongly expressed for η small. High resolution numerical studies
suggest that the lattice resonance instability band disappears (becoming both thinner and weaker) as α → 1/2.
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FIG. 18: Variation of mode structure with quadrupole occupancy η and syncopation factor α. Phase advance (σB and σQ) and
growth factors (γB and γQ) of the breathing and quadrupole modes are plotted versus σ/σ0 for σ0 = 115◦ and the indicated
values of η. Results are contrasted in columns (a) and (b) for α = 1/2 (FODO) and α = 0.1 (strong syncopation). Red Xs mark
analytical results in the zero space-charge limit, and Xs mark thin-lens limit (η → 0) analytical results for a FODO focusing
with σ/σ0 = 0.

The confluent resonance instability band has been identified as a half-integer parametric resonance between both
envelope mode oscillation frequencies and the lattice, and the lattice resonance instability band has been identified
as a half-integer parametric resonance between one envelope mode and the lattice[7]. This suggests that the location
of the envelope bands can be crudely estimated using resonance conditions based on the breathing and quadrupole
mode frequencies σ± derived from the continuous model with σ+ =

√
2σ2

0 + 2σ2 and σ− =
√
σ2

0 + 3σ2 [see Eq. (64)]
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as (σ+ +σ−)/2 = π for the confluent resonance band and σ+ = π for the lattice resonance band, or equivalently with
σ0 and σ measured in degrees,

√
2σ2

0 + 2σ2 +
√
σ2

0 + 3σ2 = 360◦ (86)

for the confluent resonance band (both breathing and quadrupole modes), and

√
2σ2

0 + 2σ2 = 180◦ (87)

for the lattice resonance band (breathing mode). Comparing to Fig. 16, Eq. (86) roughly predicts the maximum
growth factor in the confluent resonance band for the breathing and quadrupole modes, and Eq. (87) roughly predicts
the location of the thin lattice resonance band associated with the breathing mode in syncopated lattices. However,
the formulas cannot capture broad parametric nature of the instability or changes in band structure with solenoid
occupancy η or syncopation factor α. Moreover, Eq. (87) fails to suggest the non-existence of the band for FODO
lattices with α = 1/2. In order to provide some guidance for band locations in practical applications, parametric data
was employed to calculate curve fits for the instability thresholds for a FODO lattice. A least-squares fit was carried
out using a large amount of threshold data for the confluent resonance band. Elliptic and linear boundary constraint
equations in σ0 and σ measured in degrees were applied with forms:

σ2 + f(η)σ2
0 = (90◦)2[1 + f(η)], (88)

for the left-edge of the FODO confluent resonance band, and

σ + g(η)σ0 = 90◦[1 + g(η)], (89)

for the right-edge of the FODO confluent resonance band. Here, f(η) and g(η) are functions to be determined by
fitting the data, and the forms taken correspond to the most general centered ellipse and line containing the limit
point σ = σ0 = 90◦. We find very little variation in η when fitting to these forms (almost to the accuracy of the
numerical data) and errors are minimized by taking

f(η) =
4

3
,

g(η) =
1

9
.

(90)

Maximum errors (all η values) in threshold prediction from Eqs. (88)–(90) are ∼ 5◦ and ∼ 2◦ for the left- and right-
edge of the band, respectively. No two-dimensional curve fits were attempted to understand and characterize the
more intricate band changes observed in a syncopated quadrupole lattice with α 6= 1/2. Generalizations of methods
employed by Lee and Briggs[17] using Fourier expansions of the lattice focusing function κq(s) might be employed to
derive analytical formulas to better understand the instability thresholds. This topic is left for future research.

To further illustrate the mode structure, pure mode launching conditions in δR = (δrx, δr
′
x, δry, δr

′
y) are plotted in

Fig. 19 for both the breathing and quadrupole modes. Launching conditions are plotted at axial locations correspond-
ing to matched beam symmetry points in a FODO lattice: the axial mid-drift with focusing- and defocusing-in-x
quadrupoles at smaller and larger s values, and mid-quadrupole within a focusing-in-x quadrupole. Launching con-
ditions at the other axial mid-drift and mid-defocusing-quadrupole locations are simply derivable by symmetry from
the plots shown. The launching conditions employed are described in Table I and coordinates and angles are scaled as
δrj/(

√
2QLp) and δr′j/

√
2Q. Mode amplitudes A` with ` = B, Q are selected so that the maximum excursions in |δrj |

for the pure mode are 10% of the average matched beam radius {i.e., Max[δrj(ψ`)] = 0.1(1/Lp)
∫ Lp
0 ds

√
rxmrym }

and launching conditions are plotted versus mode phase ψ` for −π ≤ ψ` ≤ π (the absolute value of the phases are
arbitrary). Parameters chosen for Fig. 19 correspond to stable modes with eigenvalues and launching conditions falling
into class (a) in Fig. 4 and Table I. To launch a stable mode with a prescribed maximal excursion in δrj(s), it suffices
to select a particular axial location s = si of interest, calculate needed eigenvectors for the full lattice period as a
function of s, calculate the maximum value of |δrj(si)| with respect to both s and the mode phase ψ`, and then scale
the mode amplitude A` such that this maximum value equals the prescribed excursion. Outside of exceptional cases
where the mode phase advance σ` is a rational fraction of 2π (i.e., the lattice phase advance), this maximal excursion
will be approached arbitrarily close as the beam propagates through the periodic lattice.

Comparing the launching conditions in Fig. 19, we observe that initial conditions in δrj and δr′j for pure quadrupole
or breathing mode launches vary significantly in form with the axial location within the lattice period. This contrasts
the situation for the decoupled sum and difference modes analyzed in Secs. III and IV for continuous and solenoidal



34

-1 -0.5 0 0.5 1
-0.10

-0.05

0.00

0.05

0.10

-1 -0.5 0 0.5 1
-0.20

-0.10

0.00

0.10

0.20

-1 -0.5 0 0.5 1
-0.10

-0.05

0.00

0.05

0.10

-1 -0.5 0 0.5 1
-0.20

-0.10

0.00

0.10

0.20

-1 -0.5 0 0.5 1
-0.10

-0.05

0.00

0.05

0.10

-1 -0.5 0 0.5 1
-0.10

-0.05

0.00

0.05

0.10

-1 -0.5 0 0.5 1
-0.20

-0.10

0.00

0.10

0.20

-1 -0.5 0 0.5 1
-0.20

-0.10

0.00

0.10

0.20

Breathing Mode, Mid-Quadrupole

ψB /π

Quadrupole Mode, Mid-Quadrupole

ψQ /π

Breathing Mode, Mid-Drift

ψB /π

Quadrupole Mode, Mid-Drift

ψQ /π

ψB /π ψQ /π

R
ad

ii,
δr

j/
[

L
p]

ψB /π

A
ng

le
s,

δr
j’ /

ψQ /π

δrx

δry

δry

δrx

δrx

δry

δrx
δry

δrx

δry δry

δrx

δrx

δry

δrx
δry

2
Q

2
Q

R
ad

ii,
δr

j/
[

L
p]

A
ng

le
s,

δr
j’ /

2
Q

2
Q

R
ad

ii,
δr

j/
[

L
p]

A
ng

le
s,

δr
j’ /

2
Q

2
Q

R
ad

ii,
δr

j/
[

L
p]

A
ng

le
s,

δr
j’ /

2
Q

2
Q

′

′

′
′

′′′

′

FIG. 19: Scaled pure mode launching conditions in δrj/(
√

2QLp) and δr′j/
√

2Q (j = x, y) plotted versus mode phase ψ` (` = B,
Q) for stable breathing and quadrupole modes at the axial mid-drift (upper-half) and mid-quadrupole (lower-half) locations in
a FODO lattice. Parameters chosen are η = 0.6949, α = 1/2 (FODO), σ0 = 80◦, and σ/σ0 = 0.2.

focusing channels. In these decoupled cases the launching conditions are the same form independent of axial location
[see Eqs. 53 and (54)] and, to launch a given mode amplitude, only the relative projections on the normal mode
coordinates and angles vary with axial location in the lattice period. The decoupled mode launch conditions in
Eqs. (53) and (54) are a poor approximation to the pure breathing and quadrupole modes launching conditions for an
alternating gradient channel even though the modes have rough breathing and quadruple symmetry for specific launch
phases and axial coordinate locations. Thus the use of the continuous model as a guide for pure mode launchings in
alternating gradient focusing lattices (common in simulations studies etc.) can result in significant launching errors
with unwanted projections on the mode desired to be suppressed. A useful reduced prescription for stable pure mode
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launching (σ0 < 90◦) at the mid axial location of a focusing-in-x quadrupole in a FODO lattice (where the x excursion
of rxm is maximum and the y excursion in rym is minimum) is to take δrx to be a specified fraction of δry and zero
perturbed angles (δr′j = 0). By symmetry, analogous launching conditions with the same fractions apply at the mid
axial location of a focusing-in-y quadrupole. The numerically calculated excursion ratio δrx/δry needed for this pure
mode launch is illustrated in Fig. 20. The excursion ratio is plotted separately for pure breathing and quadrupole
mode launches as a function of σ0 for several values of quadrupole occupancy η and σ/σ0. Observe that the excursion
ratio varies weakly in both occupancy η and space-charge depression σ/σ0 relative to variations in σ0. For approximate
launches these variations in η and σ/σ0 can sometimes be neglected and the curves shown can then be applied for
values of these parameters not shown. Observe that for decreasing values of σ0 the excursion ratio approaches unity.
This is expected because alternating gradient focusing is better approximated by continuous focusing for lower values
of σ0[3]. The launching conditions illustrated in Fig. 20 hold only for a lattice with FODO symmetry (α = 1/2) and
are violated if the lattice is syncopated with α 6= 1/2.
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FIG. 20: Ratio of δrx/δry as a function of σ0 for breathing (upper row) and quadrupole (lower row) mode launches at the
axial midpoint of a focusing-in-x quadrupole in a FODO (α = 1/2) lattice. Both launch conditions have δr′x = 0 = δr′y and are
shown for σ/σ0 = 0.2 (left column) and σ/σ0 = 0.5 (right column) and the indicated values of η.

VI. CONCLUSIONS

This study extends the present understanding of the stability properties of mismatch modes supported by the KV
envelope equations describing the transverse evolution of a coasting, unbunched beam envelope. New, generalized
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linear perturbation equations were derived that describe mismatch evolution resulting from both the usual mismatch
source of errors in envelope coordinates from the periodic matched-beam condition as well as driving errors in fo-
cusing, perveance, and emittance. Important general properties of undriven envelope modes were analyzed including
symmetry classes, zero space-charge limits, and phase-space invariants. The linear perturbation equations were solved
in general for continuous focusing channels, and example solutions presented illustrate important differences in the
action of adiabatic and sudden driving errors as well as the scaling of contributions to the breathing and quadrupole
mismatch modes from the driving errors. The normal modes in the absence of driving errors were also parametri-
cally analyzed in hard-edge, periodic solenoidal and syncopated, alternating gradient quadrupole focusing channels.
This analysis extended earlier work by Struckmeier and Reiser[7] by systematically identifying possible envelope in-
stabilities over a wide range of system parameters, thereby providing valuable data for practical applications. For
solenoidal focusing, a systematic derivation of the consistent KV distribution identified invariant emittances and the
appropriate Larmor frame transformation to interpret the analysis under — both of which are necessary for elliptical
beam perturbations and were overlooked in earlier studies. It was shown that the solenoid occupancy strongly in-
fluences stability properties and that “quadrupole” symmetry envelope perturbations are generally less critical than
“breathing” symmetry envelope perturbations for intense beam transport, thereby simplifying design considerations.
For a quadrupole focusing, a previously overlooked mode was found associated with syncopated doublet lattices where
one drift between quadrupoles is shorter than the other. For both solenoidal and quadrupole focusing channels, pure
mismatch mode launching conditions were constructed. Exact launching conditions were specified for pure breathing
or quadrupole envelope mode evolutions in solenoidal channels and approximate launch conditions were formulated
for quadrupole focusing channels at lattice symmetry points. These new results provide insight on beam envelope
control and have important applications in envelope matching including possible halo mitigation through breathing
mode suppression, and in simulation studies.

The present study is limited in that only specific (though representative) cases of linear solenoidal and quadrupole
focusing lattices have been analyzed. Also, analysis of properties of mode evolutions due to driving term errors in
focusing, perveance, and emittance in periodic focusing channels is left for future study.

APPENDIX A: FRINGE FIELD EQUIVALENT MODELS FOR APPLIED FOCUSING ELEMENTS

Physical electric or magnetic focusing elements in the laboratory have material structures that produce applied
fields consistent with the three-dimensional Maxwell equations. The resulting fields will, in general, contain both
linear components that contribute to the applied focusing functions κj(s) (see Sec. II B) as well as nonlinear error
terms outside the scope of this paper. Typically, the material extent of a focusing element is axially long relative to the
transverse extent of it’s clear-bore aperture. Near the axial mid-plane, the elements in this case can often be regarded as
two-dimensional axially extruded structures, and the fields within this region can then be well-approximated by lower-
dimensional models. Near the ends, this lower-dimensional approximation breaks down, and there are significant field
variations as well as unwanted nonlinear field terms. In many cases the ends have approximate left-right symmetries
about the axial mid-plane of the element. Consistent with these field variations in the element, the linear focusing
functions κj(s) of the lattice will generally vary in s: typically with near constant value in the neighborhood of the
axial mid-plane till the end regions are approached, then smoothly dropping to exponentially small values outside of
the ends. This s-variation near the ends is called the fringe field and is associated with all physical focusing elements
— leading to the obvious question on how well so-called hard-edge lattice models with piecewise constant κj(s) such
as introduced in Sec. II B apply to physical lattices.

Differences between physical and hard-edge focusing functions κj(s) can be regarded as driving perturbations [i.e.,
the δκj(s) in Sec. II F] about a hard-edge lattice. Alternatively, the physical and hard-edge focusing functions can be
thought of as producing different matched beam envelopes for the same beam parameters with deviations between these
matched envelopes leading to possible variations in envelope mode structure about the matched beam. In either case,
prescriptions must be given for best possible choices of “equivalent” hard-edge focusing parameters. In this Appendix
we take the latter interpretation of the physical and model (hard-edge or otherwise) focusing functions giving different
matched envelopes and develop procedures for fixing “equivalent” model focusing functions to the physical lattice that
minimize deviations between physical and model matched beam envelopes. No fully general optimal procedure can be
given, because deviations depend on the specific lattice considered and the structure of the matched envelope. With
regards to low-order beam evolutions modeled by the KV envelope equations (4), we generally find that hard-edge
models produce results that are close to physical models for a periodic lattice if appropriate, “equivalent” hard-edge
equivalent parameters (e.g., for solenoids the occupancy η and focusing strength κ̂) are employed. The level of
agreement improves for simpler lattices with higher degrees of symmetry [e.g., the solenoidal and quadrupole hard-
edge lattices introduced in Sec. II B]. This agreement is likely a consequence of compensating errors and that periodic
focusing “kicks” in a repeating solution can be well modeled by kicks of varying shape that impart the same total
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impulse. On the other hand for more general lattices and evolutions (e.g., a matching section where beam envelope
parameters are transformed and there is no periodicity), uncompensated accumulated phase errors in the envelope
excursions can result in significant errors if accurate fringe-field models are not employed.

No unique prescription exists on how to best fix parameters employed to model κj(s) for either hard-edge models
or for more detailed fringe-field models. In both cases we refer best fit model parameters as “equivalent fringe”
parameters. Here we outline several reasonable procedures that can be used to fix equivalent fringe parameters.

One way to fix equivalent fringe parameters is through the dynamics of the particles. Equating matrix elements of
the 2× 2 transfer maps Mj(s|si) [see Eq. (19)] connecting one side of the optic before the fringe entering the focusing
element to the end of the fringe leaving the focusing element will result in equivalent evolutions in drift regions. It is
usually sufficient to carry out such procedures only for the undepressed orbits (Q = 0 maps) which provide a direct
measure of the applied focusing functions. This will result in three, rather than four, independent constraints in
each of the x- and y-planes (the x- and y-planes can yield identical or related constraints for some optics) because
Mj(s|si) is symplectic and has a unit determinant. Unfortunately, these kinematic methods of fixing equivalent fringe
parameters prove less than satisfactory in practical applications because they do not result in scale invariant models
and must be repeated with changes in particle energy. Moreover, if there are more equivalent fringe parameters than
kinematic constraints employed, the method is ambiguous and must be supplemented by additional constraints.

Because of these limitations, we employ an alternative, non-kinematic method of fixing equivalent fringe field
parameters defined as follows. Denote the physical and equivalent fringe model focusing functions by κj(s) and
κfj(s). Then we specify κfj(s) by requiring:

(1) Equal focusing strength at the mid-planes of the elements, i.e.,

κfj(sm) = κj(sm),

where s = {sm} are the axial coordinates of the mid-planes of the physical focusing elements.

(2) Correct integrated focusing strength in each focusing element, i.e.,

∫

element

ds κj(s) =

∫

element

ds κfj(s),

where the integration range contains the full fringe field of the physical and equivalent elements.

(3) Minimum least square error between the physical and fringe equivalent lattices. Here, we take the error measure
to be given by

error =

∫ si+Lp

si

ds [κj(s) − κfj(s)]
2.

The constraint (1) allows easy understanding of the overall “excitation” needed for the focusing element. The physical
element focusing strength κj(sm) can also be replaced in (1) by lower-dimensional optical models (e.g. a 2D analytical
quadrupole model) to allow analytical estimates of needed excitations. The constraint (2) maintains a good low-order
equivalency of focusing strength. To obtain higher-precision equivalences, (2) can be replaced by a constraint for
equal values of the single particle phase advance σ0j in the physical and equivalent lattices to obtain partial kinematic
equivalency. Finally, (3) constrains any additional parameters after (1) and (2) establish low-order equivalency. Note
that κfj(s) = κj(s) corresponds to zero error and an identical kinematic transfer matrix Mj(s|si) between all points in
the lattice with or without space-charge. Constraints (2) and (3) both recover the correct thin-lens limit. Additional
criteria can also be added to the error function in (3) to further constrain the equivalent fringe model for minimum
envelope excursions and other criteria[26]. For the special case of solenoidal and FODO quadrupole lattices with
piecewise constant κj(s) as defined in Sec. II B, only two equivalent lattice parameters need be set (e.g., κ̂ and η for
the solenoidal lattice) for which the first two constraints are sufficient and the third error constraint is not needed.

We illustrate the results of this equivalent fringe procedure with the FODO electric quadrupole lattice of the High
Current Transport Experiment (HCX) at the Lawrence Berkeley National Laboratory[24, 25]. As shown in cross-
section in Fig. 21(a), the quadrupoles are formed from left and right conducting end-plates held at equal magnitude
positive and negative biases and conducting rods attached to each end-plate along the principal x- and y-axes as
indicated. The structure is mechanically supported at the axial mid-plane by a plate connected to the end-plates
by insulators, end-plates are 12.7mm thick with clear-bore aperture holes of radii rp = 23.0mm, rods are of radii
∼ (8/7)rp = 26.3mm (ratio chosen to minimize nonlinear fields in 2D axial extruded geometry of the mid-plane) and
axial length 154.5mm, and gaps between rods and end-plates are 17.7mm. The quadrupoles are arraigned with an
overall lattice period of Lp = 435.2mm and adjacent end-plates are biased to the same potential. This detailed lattice
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structure was loaded into a 3D electrostatic field solver in the WARP code[27] and the linear applied field moments
were extracted from the full 3D electric field solution. These applied field moments can then be linearly scaled for the
quadrupole bias (excitation) employed and then Eq. (11) is used to calculate the physical lattice focusing functions
κx(s) = −κy(s) ≡ κq(s) shown in Fig. 21. Two equivalent fringe focusing functions derived by the procedure above
are also shown in Fig. 21 superimposed with the physical focusing function. The equivalent model in Fig. 21(b)
is the hard-edge model in Sec. II B with square-edges [i.e., piecewise constant κq(s)], and the equivalent model in
Fig. 21(c) has κq(s) with constant value near the mid-plane and linear ramp variations in s (zero to mid-plane value)
entering and exiting the quadrupole. Only one quadrupole of the symmetric FODO lattice is shown for clarity.
The procedure obtains for the square-edge model a best fit occupancy of η = 0.6949 (corresponding to axial length
ηLp/2 = 151.5mm), and for the ramped-edge model a central flat region of axial length 117.1mm with ramped ends
of length 34.5mm. The total error according to criteria (3) above is about 74 times larger for the square-edge model
than for the ramped-edge model.
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FIG. 21: Transverse cross-section (a) of the electrostatic quadrupole lattice geometry of the High Current Experiment (HCX).
In (b) and (c), corresponding focusing functions κq(s) are plotted in arbitrary units versus axial distance from the axial mid-
plane of the quadrupole. The physical lattice κq(s) is shown (red) together with κq(s) for equivalent fringe models with square
and ramped edges (black) in (b) and (c). Dotted lines in (b) and (c) indicate axial locations of structures shown in (a) with
labels 1–6 in red.

Matched beam envelopes for both the physical focusing function and the square-edge and linear-ramp equivalent
fringe models shown in Fig. 21 are contrasted in Fig. 22. In this procedure the physical quadrupole excitation was
chosen such that σ0 = 80◦. For both solutions values of σ0 and σ/σ0 are listed for the same values of perveance and
emittance corresponding to a usual operating point in the HCX experiment. Little difference in matched envelopes
are observed between the physical and either equivalent fringe models with the linear ramped equivalent model giving
smaller deviations than the square-edge model (matched envelopes almost overlay). Deviations between the matched
envelope structure of the physical and equivalent lattices are even smaller than those shown in the figure if the
excitations of the physical and equivalent lattices are each separately tuned to obtain the same values of σ0 after the
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equivalency procedure is applied to set geometric parameters of the equivalent lattice. These results illustrate the
general feature that simple equivalent fringe models result in little change in matched envelope structure for lattices
with a high degree of symmetry.
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FIG. 22: Comparison of matched beam envelopes calculated from a full fringe field model (red) and an equivalent fringe models
(black) for (a) the a square-edge and (b) the ramped-edge models shown in Fig. 21. The presentation format of the matched
solutions is the same as in Fig. 15. Both the physical and equivalent fringe model lattices have the same quadrupole excitation,
beam parameters are Q = 8. × 10−4 and εx = εy = 60. mm-mrad, and the undepressed and depressed single particle phase
advances σ0 and σ are listed above the plots.

APPENDIX B: LARMOR-FRAME TRANSFORMATIONS FOR ANALYSIS OF SOLENOIDAL
FOCUSING SYSTEMS AND SELF-CONSISTENT KV DISTRIBUTION FUNCTIONS

In situations where there is an s-varying solenoidal magnetic field B(s) = −[B ′
z(s)/2](xx̂+yŷ)+Bz(s)ẑ in addition

to (or in place of) other physical laboratory-frame focusing forces described by κx(s) and κy(s) (e.g., electric or
magnetic quadrupoles or a uniform, partially neutralizing background), the transverse equations of motion of a beam
particle can be expressed as[3, 28]

x′′ + κxx− k′Ly − 2kLy
′ +

q

mγ3
bβ

2
b c

2

∂φ

∂x
= 0,

y′′ + κyy + k′Lx+ 2kLx
′ +

q

mγ3
bβ

2
b c

2

∂φ

∂y
= 0.

(B1)

Here,

kL(s) =
qBz(s)

2mγbβbc
=

ωc
2γbβbc

(B2)

is the Larmor wavenumber, ωc = qBz/m is the cyclotron frequency, and −∂φ/∂x and −∂φ/∂y are the x- and y-
components of the self-electric field of the beam in the electrostatic approximation. For solenoidal focusing κx = κy = 0

and
∫ Lp
0
ds kL(s)2 6= 0. Note that Eq. (B1) reduces to Eq. (1) for kL = 0 and (q/mγ3

bβ
2
b c

2)∂φ/∂x = −Qx/[(rx+ry)rx]
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and (q/mγ3
bβ

2
b c

2)∂φ/∂y = −Qy/[(rx + ry)ry ], corresponding to the interior fields of a uniform density elliptical beam
in free-space with principal axis radii rx and ry oriented along the x and y coordinate axes.

For solenoidal focusing, the cross-coupled form of Eq. (B1) results in a macroscopic rotation of the beam about the
longitudinal axis. Because of this, we analyze the particle equations in a x̃− ỹ coordinate system rotated by an angle
ψ̃(s) relative to the x− y laboratory-frame as indicated in Fig. 23 with

x̃ =x cos ψ̃ + y sin ψ̃,

ỹ = − x sin ψ̃ + y cos ψ̃.
(B3)

Henceforth, we use tildes (̃ ) to denote quantities measured in the rotating-frame. For a uniform density elliptical
beam with (possibly evolving) principal axes r̃x̃ = 2〈x̃2〉⊥ and r̃ỹ = 2〈ỹ2〉⊥ along the rotating x̃ and ỹ coordinate axes
(see Fig. 23), the self-field forces within the beam are given by

− q

mγ3
bβ

2
b c

2

∂φ

∂x
=

2Q

r̃x̃ + r̃ỹ

(
x̃

r̃x̃
cos ψ̃ − ỹ

r̃ỹ
sin ψ̃

)
,

− q

mγ3
bβ

2
b c

2

∂φ

∂y
=

2Q

r̃x̃ + r̃ỹ

(
x̃

r̃x̃
sin ψ̃ +

ỹ

r̃ỹ
cos ψ̃

)
.

(B4)

Paralleling the analysis of Wiedemann[28], we find that ψ̃ can be selected such that the principal axes of the uniform

density elliptical beam remain aligned with the x̃- and ỹ-axes as the elliptical beam evolves. This occurs when ψ̃
satisfies the “Larmor-frame” condition ψ̃′ = −kL with the initial condition ψ̃(s = si) = 0, or equivalently that

ψ̃ = −
∫ s

si

ds̄ kL(s̄). (B5)

For this choice of ψ̃, the particle equations of motion (B1) can be simply expressed in the rotating “Larmor-frame” as

x̃′′ + k2
Lx̃−

2Q

(r̃x̃ + r̃ỹ)r̃x̃
x̃ = 0,

ỹ′′ + k2
Lỹ −

2Q

(r̃x̃ + r̃ỹ)r̃ỹ
ỹ = 0.

(B6)

Consistent with this Larmor transform, the particle angles x′ and y′ transform as

x̃′ =x′ cos ψ̃ + y′ sin ψ̃ + kL(x sin ψ̃ − y cos ψ̃),

ỹ′ = − x′ sin ψ̃ + y′ cos ψ̃ + kL(x cos ψ̃ + y sin ψ̃).
(B7)

The particle equations of motion (B6) in the rotating Larmor-frame variables are the same form as the laboratory-
frame equations of motion (1) with κx = κy → k2

L. Therefore, the usual KV analysis[29] involving transformations to
phase-space invariants that are quadratic forms in conjugate phase-space variables can be employed in the rotating-
frame to construct a self-consistent, KV equilibrium solution to the Vlasov equation. In the Larmor-frame, the Vlasov
equation for the single-particle distribution function f̃(x̃, x̃′, ỹ, ỹ′) consistent with the particle equations of motion (B6)
can be expressed as

d

ds
f̃ =

∂

∂s
f̃ + x̃′

∂

∂x̃
f̃ + ỹ′

∂

∂ỹ
f̃ +

(
−k2

Lx̃+
2Qx̃

(r̃x̃ + r̃ỹ)r̃x̃

)
∂

∂x̃′
f̃ +

[
−k2

Lỹ +
2Qỹ

(r̃x̃ + r̃ỹ)r̃ỹ

]
∂

∂ỹ′
f̃ = 0. (B8)

The KV equilibrium distribution f̃ satisfying the Vlasov equation can be written as

f̃(x̃, x̃′, ỹ, ỹ′) =
λ

qπ2ε̃x̃ε̃ỹ
δ

[(
x̃

r̃x̃

)2

+
(r̃x̃x̃

′ − r̃′x̃x̃)
2

ε̃2x̃
+

(
ỹ

r̃ỹ

)2

+
(r̃ỹ ỹ

′ − r̃′ỹ ỹ)
2

ε̃2ỹ
− 1

]
, (B9)

where δ(x) is the Dirac delta-function, ε̃x̃ and ε̃ỹ are conserved rms emittances of the uniform density beam in the
rotating-frame defined by

ε̃x̃ ≡ 4[〈x̃2〉⊥〈x̃′2〉⊥ − 〈x̃x̃′〉2⊥]1/2 = const,

ε̃ỹ ≡ 4[〈ỹ2〉⊥〈ỹ′2〉⊥ − 〈ỹỹ′〉2⊥]1/2 = const,
(B10)
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FIG. 23: Solenoidally focused elliptical envelop beam with principal axis radii r̃x̃ and r̃ỹ aligned along x̃ and ỹ coordinate axes

that are rotated by an angle ψ̃(s) relative to the laboratory-frame.

and the envelope radii r̃x̃ = 2
√
〈x̃〉⊥ and r̃ỹ = 2

√
〈ỹ〉⊥ obey the envelope equations

r̃′′x̃ + k2
Lr̃x̃ −

2Q

r̃x̃ + r̃ỹ
− ε̃2x̃
r̃3x̃

= 0,

r̃′′ỹ + k2
Lr̃ỹ −

2Q

r̃x̃ + r̃ỹ
−
ε̃2ỹ
r̃3ỹ

= 0.

(B11)

If the s̃ are dropped, Eq. (B9) can also be applied to describe the laboratory-frame KV distribution appropriate
for quadrupole or continuous focusing channels that is consistent with εx = const, εy = const, and the envelope

equation (4)[1, 3] for the evolution of rx = 2
√
〈x2〉⊥ and ry = 2

√
〈y2〉⊥.

The laboratory-frame envelope equations (4) are identical to the Larmor-frame envelope equations (B11) under the
substitutions

κx = κy → k2
L =

(
ωc

2γbβbc

)2

,

rx → r̃x̃,

ry → r̃ỹ,

εx → ε̃x̃,

εy → ε̃ỹ.

(B12)

Therefore, we can apply the laboratory-frame envelope equations (4) to analyze the evolution of an elliptical beam
envelope in a solenoidally focused transport channel provided we take κx = κy = k2

L and interpret the results as
applying in the rotating Larmor-frame defined by Eqs. (B3) and (B5). This correspondence also requires that the
stationary laboratory-frame x-y coordinate system be chosen to lie along the principal axes of the initial (s = si)

elliptical perturbations with initial values rx(si) = 2
√
〈x2(si)〉⊥ = r̃x̃(si) and ry(si) = 2

√
〈y2(si)〉⊥ = r̃ỹ(si) and the

particle phase advances (i.e., σ0, σx and σy) must also be interpreted as being defined in the rotating Larmor-frame.
Moment calculations verify that the KV distribution (B9) is self-consistent and help elucidate the structure of the

rotating equilibrium. The Larmor-frame transformation defined by Eqs. (B3) and (B7) is canonical and phase-space
area preserving, with dxdy = dx̃dỹ and dx′dy′ = dx̃′dỹ′ and hence the distribution transforms to the lab-frame as

f̃(x̃, x̃′, ỹ, ỹ′) = f(x, x′, y, y′). (B13)

The rotating-frame density ñ =
∫
d2x̃′ f̃ is equal to the lab frame density, i.e.,

ñ(x̃, ỹ) = n(x, y) =

∫
d2x′ f (B14)
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TABLE II: Moments of the KV distributions for an elliptical beam with Pθ = 0 [Eq. (B9)] and an axisymmetric beam with

Pθ 6= 0 and −1 < 2Pθ/ε̃ < 1 [Eq. (B21)]. All second-order moments not listed vanish (i.e.,
∫
d2x̃′ x̃ỹf̃ = 0, 〈x̃ỹ〉⊥ = 0) for both

distributions.

KV Distribution

Moment Elliptical with Pθ = 0 [Eq. (B9)] Axisymmetric with Pθ 6= 0 [Eq. (B21)]

∫
d2x̃′ x̃′f̃ r̃′x̃

x̃
r̃x̃
ñ

(
r̃′
b
r̃b
x̃− 2

Pθ

r̃2
b

ỹ

)
ñ

∫
d2x̃′ ỹ′ f̃ r̃′ỹ

ỹ
r̃ỹ
ñ

(
r̃′
b
r̃b
ỹ + 2

Pθ

r̃2
b

x̃

)
ñ

∫
d2x̃′ x̃′2 f̃

[
ε̃2
x̃

2r̃2
x̃

(
1 − x̃2

r̃2
x̃

− ỹ2

r̃2
ỹ

)
+ r̃′2x̃

x̃2

r̃2
x̃

]
ñ

[
r̃′2
b

r̃2
b

x̃2 +
4Pθ
r̃3
b

(
Pθỹ

r̃b
− r̃′b

)
ỹ + ε̃2

2r̃2
b

(
1 −

4P2
θ

ε̃2

)(
1 − x̃2

r̃2
b

− ỹ2

r̃2
b

)]
ñ

∫
d2x̃′ ỹ′2 f̃

[
ε̃2
ỹ

2r̃2
ỹ

(
1 − x̃2

r̃2
x̃

− ỹ2

r̃2
ỹ

)
+ r̃′2ỹ

ỹ2

r̃2
ỹ

]
ñ

[
r̃′2
b

r̃2
b

ỹ2 +
4Pθ
r̃3
b

(
Pθx̃

r̃b
+ r̃′b

)
x̃+ ε̃2

2r̃2
b

(
1 −

4P2
θ

ε̃2

)(
1 − x̃2

r̃2
b

− ỹ2

r̃2
b

)]
ñ

∫
d2x̃′ x̃x̃′f̃

r̃′
x̃
r̃x̃
x̃2ñ

(
r̃′
b
r̃b
x̃−

2Pθ
r̃2
b

ỹ

)
x̃ñ

∫
d2x̃′ ỹỹ′ f̃

r̃′
ỹ
r̃ỹ
ỹ2ñ

(
r̃′
b
r̃b
ỹ +

2Pθ
r̃2
b

x̃

)
ỹñ

∫
d2x̃′ (x̃ỹ′ − ỹx̃′)f̃ 0

2Pθ
r̃2
b

(x̃2 + ỹ2)ñ

〈x̃2〉⊥
r̃2
x̃
4

r̃2
b
4

〈ỹ2〉⊥
r̃2
ỹ
4

r̃2
b
4

〈x̃′2〉⊥
r̃2
x̃
4 +

ε̃2
x̃

4r̃2
x̃

r̃′2
b
4 + ε̃2

4r̃2
b

〈ỹ′2〉⊥
r̃2
ỹ
4 +

ε̃2
ỹ

4r̃2
ỹ

r̃′2
b
4 + ε̃2

4r̃2
b

〈x̃x̃′〉⊥
r̃x̃r̃

′
x̃

4

r̃br̃
′
b

4

〈ỹỹ′〉⊥
r̃ỹ r̃

′
ỹ

4

r̃br̃
′
b

4

〈x̃ỹ′ − ỹx̃′〉⊥ 0 Pθ

16[〈x̃2〉⊥〈 x̃′ 2〉⊥ − 〈x̃x̃′〉2⊥] ε̃2x̃ ε̃2

16[〈ỹ2〉⊥〈 ỹ′ 2〉⊥ − 〈ỹỹ′〉2⊥] ε̃2ỹ ε̃2

and can be calculated as

ñ =

∫
d2x̃′ f̃ =

{
λ

πr̃x̃r̃ỹ
, if (x̃/r̃x̃)

2 + (ỹ/r̃ỹ)
2 < 1,

0, otherwise.
(B15)

verifying consistency. Laboratory-frame statistical averages are simply expressed in terms of rotating-frame distribu-
tion as

〈· · · 〉⊥ =

∫
d2x̃

∫
d2x̃′ · · · f̃∫

d2x̃
∫
d2x̃′ f̃

. (B16)

Various moments of the Larmor-frame KV distribution (B9) are summarized in Table II. The moments in Table II
can also be applied to the laboratory-frame KV distribution for quadrupole and continuous focusing channels by
simply dropping all s̃. It should be stressed that the rotating-frame emittances ε̃x̃ and ε̃ỹ are not, in general, equal
to the laboratory-frame emittances εx and εy, which evolve in s for an elliptical KV beam in a solenoidal focusing
channel. Laboratory-frame projections of the moments are straightforward to calculate from the transformations (B3)
and (B7).

The angular momentum of the KV distribution (B9) is important in understanding the structure of the equilibrium.
The vector potential of the axial magnetic field can be expressed as A = (Bz/2)(yx̂ − xŷ), and canonical momenta
conjugate to the coordinates Qx = x and Qy = y are Px = x′ − kLy and Py = y′ + kLx. Therefore, the single-particle
canonical angular momentum pθ ≡ Q×P · ẑ can be expressed as

pθ = xy′ − yx′ + kL(x2 + y2)

= x̃ỹ′ − ỹx̃′.
(B17)

For any distribution of particles, it follows from the equations of motion (B1) that the system canonical angular
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momentum

Pθ ≡ 〈pθ〉⊥ = 〈xy′ − yx′〉⊥ + kL〈x2 + y2〉⊥ (B18)

satisfies

d

ds
Pθ = (κx − κy)〈xy〉⊥ − q

mγ3
bβ

2
b c

2

〈
x
∂φ

∂y
− y

∂φ

∂x

〉

⊥

. (B19)

For a solenoidal focused beam, κx = κy = 0 and the first moment term in Eq. (B19) vanishes. Using Green’s functions
for the Poisson equation ∇2φ⊥ = −qn/ε0, it can be shown that the second moment term in Eq. (B19) also vanishes
provided any conducting boundaries are azimuthally invariant (∂/∂θ = 0). Thus, in a solenoidal channel, Pθ = const
for any distribution function focused within an axisymmetric beam pipe. For the specific KV distribution in Eq. (B9),
we calculate

Pθ ≡ 〈pθ〉⊥ = 〈x̃ỹ′ − ỹx̃′〉⊥ = 0. (B20)

This zero value of Pθ is appropriate for a beam launched from a field-free source (i.e., Bz = 0 at the source location),
and results in maximum focusability for given Larmor-frame emittances ε̃x̃ and ε̃ỹ. Beams injected from a source
immersed in a finite axial magnetic field Bz have nonzero Pθ and higher effective emittances[30, 31]. Also, for a KV
equilibrium evolving in an alternating gradient focusing channel, Eq. (B9) can be applied in the laboratory frame
(drop all s̃) to show that Pθ = 〈xy′ − yx′〉⊥ = 0 in this case too. Elliptical KV distributions analogous to Eq. (B9)
can also be constructed for nonzero values of Pθ = const for both solenoidally focused beams in the Larmor-frame and
quadrupole focused (possibly with skew-couplings) beams in the laboratory-frame. However, these distributions will
result in envelope equations that differ in form from Eq. (4) and have more complicated invariant emittances explored
by Dragt, Neri, and Rangarajan[32] and Barnard (see Ref. [33]) because the elliptical beam axes rotate within the
Larmor-frame. Coupled moment formulations have been employed to analyze the special case of elliptical envelope
perturbations about a round-beam equilibrium for a continuously focused beam with Pθ 6= 0[34]. In the present
paper, we explore only cases of envelope evolution that we can readily map to Eq. (4) while concretely connecting the
model to physically relevant focusing systems and quantities. Elliptical beams with Pθ 6= 0 in solenoidal or alternating
gradient quadrupole focusing channels[35] are beyond the scope of the present analysis. For the special case of a round

beam envelope (i.e., r̃x̃ = r̃ỹ ≡ r̃b) with Pθ 6= 0 in a solenoidal focusing channel, the envelope envelope equations
can also be mapped to the form of Eq. (B11) with a KV distribution previously analyzed by Chen, Pakter, and
Davidson[36]. (In Ref. [36] the authors do not refer to the distribution analyzed as being KV, but it is appropriate to
label any distribution as being of KV form if it is a delta-function of a Courant-Snyder invariant that is expressible as
a quadratic form in canonically transformed phase-space variables and has a uniform density projection. An infinity
of KV distributions can be constructed through linear canonical transformations of the quadratic standard form of
the KV distribution[29].) For this special axisymmetric case the self-consistent KV distribution satisfying the Vlasov
equation can be expressed as

f̃(x̃, x̃′, ỹ, ỹ′) =
λ

qπ2ε̃2
δ

[(
x̃

r̃b

)2

+

(
r̃bx̃

′ − r̃′bx̃

ε̃

)2

+

(
ỹ

r̃b

)2

+

(
r̃bỹ

′ − r̃′bỹ

ε̃

)2

− 4Pθ
ε̃2

(x̃ỹ′ − ỹx̃′) −
(

1 − 4P 2
θ

ε̃2

)] (B21)

and the corresponding emittances and envelope equation are given by Eqs. (B10) and (B11) with ε̃x̃ = ε̃ỹ ≡ ε̃ and
r̃x̃ = r̃ỹ = r̃b. The self-consistent density can be calculated from Eq. (B21) for −1 < 2Pθ/ε̃ < 1 (corresponding to
sufficiently small angular momentum to be focusable) as

ñ =

∫
d2x̃′ f̃ =

{ λ
πr̃2
b

, if (x̃/r̃b)
2 + (ỹ/r̃b)

2 < 1,

0, otherwise,
(B22)

and additional moments are summarized in Table II for −1 < 2Pθ/ε̃ < 1. Note that the nonzero Pθ term results
in directed azimuthal flow contributions to various moments. For an axisymmetric beam, it is instructive to employ
Eqs. (B3) and (B7) to express the constant Larmor-frame emittance ε̃ in terms of laboratory-frame moments. This
gives

ε̃2 = ε2x − 4〈r2θ′〉⊥ + 4P 2
θ = const, (B23)
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where εx = εy is the ordinary laboratory-frame emittance given by Eq. (5) and r =
√
x2 + y2 and θ = tan−1(y, x) are

the usual cylindrical particle coordinates in the laboratory-frame. Because Pθ = const, it follows from Eq. (B23) that

εr ≡
√
ε2x − 4〈r2θ′〉⊥ (B24)

can be interpreted as a conserved radial emittance for an axisymmetric beam. In summary, round beam envelopes
with rx = ry and Pθ 6= 0 can also be analyzed with the envelope equations (4) provided we interpret the results in
the rotating Larmor-frame and substitute

κx = κy → k2
L,

rx = ry → r̃b,

εx = εy → ε̃ =

(B25)

in Eq. (4). In this axisymmetric case, the initial phase of orientation of the stationary laboratory-frame is arbitrary.
Various authors have derived equivalent axisymmetric beam envelope equations valid for finite Pθ including: Lee and
Cooper[31], Miller[30], and Chen, Pakter and Davidson[36].

APPENDIX C: DERIVATION OF EQUATION (18)

The free-drift differential equation r′′+ = Q/r+ [Eq. (17)] can be integrated to give

C1 =
r′2+
2

−Q ln r+, (C1)

where C1 = const is the scaled envelope Hamiltonian. We temporarily assume that r′+ ≥ 0. Then r′+ =√
2Q ln r+ + 2C1, and integrating once again we have

s = e−C1
√
π erfi

[√
ln

(
r+√
2Q

)
+ C1

]
− C2, (C2)

where C2 = const and erfi(z) = erf(iz)/i = (2/
√
π)
∫ z
0 dt exp(t2) is the imaginary error function. Eliminating C1 and

C2 in terms of the initial conditions r+ = r+(si) and R′
+ = R′

+(si) at s = si yields

ln

[
r+(s)

r+(si)

]
= −r

′2
+(si)

2Q
+

[
erfi−1

{
erfi

[
r′+(si)√

2Q

]
+

√
2Q

π
e
r′2+(si)

2Q
(s− si)

r+(si)

}]2

. (C3)

Because r′′+ = Q/r+, r+ is an analytic function. Therefore, even though Eq. (C3) was derived under assumption that
r′+ ≥ 0, Eq. (C3) is also valid for r′+ < 0. Solving Eq. (C3) for r+(s) yields the free-drift solution given in Eq. (18).

APPENDIX D: PHASE ADVANCE OF ENVELOPE MODES IN THE ZERO SPACE-CHARGE LIMIT

In the limit of zero space-charge (Q = 0), the equations of motion [see Eq. (1)] for the particle x- and y-orbits are
decoupled and of the same form. Likewise, the resulting x- and y-envelope equations [see Eq. (4)] are decoupled and
of the same form. Therefore, we analyze only the x-equation here. The x equation of motion of the particle is given
by

x′′ + κxx = 0. (D1)

Here, κx(s + Lp) = κx(s) describes the linear applied focusing function of a lattice with periodicity Lp that is of
otherwise unspecified form. To define the phase advance of the x-orbit, without loss in generality, we express the
orbit in phase-amplitude form as[12, 13]

x(s) = Axwx(s) cos [ψx(s)] . (D2)

Here, Ax = const, ψ′
x(s) = 1/w2

x(s), and wx(s) is the positive solution to the equation

w′′
x + κxwx −

1

w3
x

= 0 (D3)
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satisfying the periodicity requirement wx(s+Lp) = wx(s). This equation is recognized as the scaled envelope equation
with zero space-charge [see Eq. (4)] and therefore the matched beam envelope rxm is related to the amplitude function
wx as

rxm =
√
εxwx. (D4)

Consistent with Eqs. (24) and (26), the single-particle phase advance σ0x of oscillations in x over one lattice period is

σ0x = ψx(si + Lp) − ψx(si) =

∫ si+Lp

si

ds

w2
x

, (D5)

independent of the initial axial coordinate si.
Consistent with the x-particle equation of motion (D1), the beam envelope equation for rx = 2

√
〈x2〉⊥ is

r′′x + κxrx −
ε2x
r3x

= 0. (D6)

We expand rx as rx = rxm + δrx where rxm =
√
εxwx is the matched beam radius, and δrx is a small-amplitude

perturbation about the matched beam. Then δrx satisfies the linearized envelope equation [see also Eq. (37)]

δr′′x + κxδrx + 3
ε2x
r4xm

δrx = 0. (D7)

Paralleling the analysis above for the particle orbits, the solution to the linearized envelope equation can be expressed
in phase-amplitude form as

δrx(s) = Aewe(s) cos [ψe(s)] . (D8)

Here, Ae = const, ψ′
e(s) = 1/w2

e(s), and we(s) the positive solution to

w′′
e + κxwe +

3

w4
x

we −
1

w3
e

= 0 (D9)

satisfying the periodicity requirement we(s + Lp) = we(s). The phase advance σex of oscillations in δrx over one
lattice period is given by

σex = ψe(si + Lp) − ψe(si) =

∫ si+Lp

si

ds

w2
e

. (D10)

Comparison of Eqs. (D3) and (D9) shows that the solution for we is connected to wx as

we =
wx√

2
. (D11)

Thus, from Eqs. (D5) and (D10), the phase advances of the single-particle x-orbit and the envelope δrx are related as

σex = 2σ0x. (D12)

Equation (D12) proves that in the limit of zero space-charge that the phase advance of oscillations in δrx are two
times the phase advance of undepressed particle oscillations in x. An analogous result to Eq. (D12) holds in the y-
plane. Equation (D12) is straightforward to generalize to show that for zero space-charge and arbitrary, non-periodic
lattices with general κx(s) that the rate of phase accumulation of a small-amplitude envelope perturbation about a
non-periodic reference envelope evolution is twice the rate of phase accumulation of the single-particle orbit.

APPENDIX E: ENVELOPE MODE COURANT-SNYDER INVARIANTS

For continuous focusing or solenoidal transport channels with κx = κy ≡ κ, undriven envelope perturbations
δr± = (rx ± ry)/2 satisfy the uncoupled equations [see Eq. (45)]

δr′′+ + κ δr+ +
2Q

r2m
δr+ +

3ε2

r4m
δr+ = 0,

δr′′− + κ δr− +
3ε2

r4m
δr− = 0.

(E1)
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Here, κ(s+ Lp) = κ(s) describes the linear applied focusing forces of the lattice with periodicity Lp and is otherwise
unspecified (κ = k2

β0 = const for continuous focusing). As in standard treatments of single-particle orbits[12, 13],
without loss in generality, we express the envelope perturbations in phase-amplitude form as

δr± = A±w±(s) cos[ψ±(s)]. (E2)

Here, A± = const, ψ′
± = 1/w2

±, and w± are positive solutions to the equations

w′′
+ + κ w+ +

2Q

r2m
w+ +

3ε2

r4m
w+ − 1

w3
+

= 0,

w′′
− + κ w− +

3ε2

r4m
w− − 1

w3
−

= 0

(E3)

satisfying the periodicity requirements w±(s + Lp) = w±(s). Employing scaling procedures analogous to those pre-
sented in Sec. II E, it can be shown that the envelope amplitude functions w± can be regarded as being parameterized
by Lp, σ0, σ/σ0, and parameters that describe the shape of the lattice focusing function κ(s). In contrast to the
usual single-particle amplitude functions of undepressed particle orbits[12, 13], w± will depend on matched beam
space-charge depression parameter σ/σ0 in addition to the lattice parameters σ0, Lp, etc. The phase advance σ± of
oscillations in δr± over one lattice period is given by

σ± = ψ±(si + Lp) − ψ±(si) =

∫ si+Lp

si

ds

w2
±

, (E4)

independent of the initial coordinate axial si. Differentiating Eq. (E2) and employing ψ′
± = 1/w2

± to simplify the
result gives

δr±
w±

= A± cosψ±,

w′
±δr± − w±δr

′
± = A± sinψ±.

(E5)

Squaring and adding these equations, we obtain quadratic Courant-Snyder invariants in δr±–δr′± given by

(
δr±
w±

)2

+
(
w′

±δr± − w±δr
′
±

)2
= A2

± = const. (E6)

These invariants of the envelope perturbations are equations of ellipses in δr±–δr′± phase-space where the axes of the
ellipses do not, in general, align with the δr± and δr′± axes. They can be interpreted as area measures because as
the perturbations evolve the set of all initial conditions satisfying Eq. (E6) (corresponding to all pure modes with the
same oscillation amplitude) will trace out an ellipse in δr±–δr′± phase-space with area πA± = const. Analysis of the
evolution of this constant area ellipse (in terms of elongation and rotation) can be facilitated by introducing Twiss
parameters as in standard treatments of uncoupled single-particle dynamics[13]. It is straightforward to show that
Courant-Snyder invariants directly analogous to those in Eq. (E6) apply to non-periodic lattices with general κ(s) for
any small-amplitude envelope perturbations about a reference envelope evolution that need not be matched. In this
non-periodic case, w± satisfies Eq. (E3) for a general reference envelope solution rm and w± need not be periodic.

Unfortunately, the analysis of Courant-Snyder invariants for the more general case of undriven coupled envelope
modes evolving according to [see Eq. (37)]

δr′′j + κjδrj +
2Q

(rxm + rym)2
(δrx + δry) +

3ε2j
r4jm

δrj = 0 (E7)

with j = x, y, and κx 6= κy is considerably more complicated than in the continuous or solenoidal focusing case
above. This complication arises because when κx 6= κy the normal coordinates of the coupled modes are not simply
expressible. In the previous case, the decoupled sum and difference coordinates δr± = (rx ± ry)/2 provided simple
expressions of the normal coordinates. For κx 6= κy, the normal coordinates are expressible in terms of the s-varying
eigenvectors of the transfer map in Eq. (47). Fortunately, Edwards and Teng[37] have presented a general formulation
for analysis of two-dimensional coupled linear motion that can be directly applied to coupled envelope modes. To
make a connection to this work, the equations of motion (E7) of the envelope perturbations can be expressed in
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Hamiltonian form as

d

ds
δrj =

∂H

∂δr′j
,

d

ds
δr′j = − ∂H

∂δrj
,

(E8)

where

H =
1

2

(
δr′2x + δr′2y

)
+

1

2
κxδr

2
x +

1

2
κyδr

2
y +

Q

(rxm + rym)2
(δrx + δry)

2 +
3

2

ε2x
r4xm

δr2x +
3

2

ε2y
r4ym

δr2y (E9)

is the envelope Hamiltonian. From this Hamiltonian formulation, the correspondence of variables and coefficients
employed by Edwards and Teng to those used here are readily identified. The conjugate variables x, px and y, py of
Edwards and Teng are replaced by

x→ δrx,

px → δr′x,

y → δry ,

py → δr′y ,

(E10)

and the coefficients L, F , G, and K are identified as

L = 0,

F = κx +
2Q

(rxm + rym)2
,

G = κy +
2Q

(rxm + rym)2
,

K =
2Q

(rxm + rym)2
.

(E11)

The quadratic invariants calculated by Edwards and Teng can then be directly applied and are generalized Courant-
Snyder invariants of the coupled envelope modes. Application and interpretation of these coupled motion invariants
are considerably more complicated than in the case presented above for solenoidal and continuous focusing. However,
the structure and consequences of the generalized invariants are loosely analogous to the uncoupled motion Courant-
Snyder invariants.

APPENDIX F: MATRIX ANALYSIS OF CONTINUOUS FOCUSING NORMAL ENVELOPE MODES

For continuous focusing, the matrix form of the equation of motion of undriven envelope perturbations δR =
(δrx, δr

′
x, δry, δr

′
y) is given by dδR/ds+ K · δR = 0 [Eq. (38) with δP = 0] with a constant coupling matrix K given

by Eq. (40). The equilibrium constraint equation (61) can be used to evaluate K as

K =




0 −1 0 0
σ2
++σ2

−

2L2
p

0
σ2
+−σ2

−

2L2
p

0

0 0 0 −1
σ2
+−σ2

−

2L2
p

0
σ2
++σ2

−

2L2
p

0



. (F1)

Here we have expressed the elements of K in terms of the phase advances of the breathing and quadrupole modes
σ+ =

√
2σ2

0 + 2σ2 and σ− =
√
σ2

0 + 3σ2 as defined in Eq. (64). The equation of motion for δR is trivially integrated
from an initial condition δR(si) at axial coordinate s = si as

δR(s) = Me(s|si)δR(si), (F2)

where

Me(s|si) = e−K(s−si) (F3)
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is the transfer matrix of the envelope perturbations. This solution is equivalent to the one presented in Eq. (65).
Any linear transform of the envelope coordinates δR can be expressed as

˜δR = T · δR, (F4)

where T = const is some invertible 4 × 4 matrix and ˜δR is the transformed (tilde variables) envelope coordinate
vector. The equation of motion in transformed coordinates becomes

d

ds
˜δR + K̃ · ˜δR = 0, (F5)

where

K̃ = T ·K ·T−1. (F6)

The solution to Eq. (F5) is given by

˜δR(s) = M̃e(s|si) ˜δR(si) (F7)

where the transformed transfer map

M̃e(s|si) = e−K̃(s−si) (F8)

is related to the untransformed map Me(s|si) by

M̃e(s|si) = T ·Me(s|si) · T−1. (F9)

The matrix Me(si +Lp|si) has four eigenvalues λn with n = 1, 2, 3, and 4 defined by Me(si +Lp|si) ·En = λnEn

[see Eq. (47)]. Transforming this equation gives M̃e(si+Lp|si) ·Ẽn = λnẼn, where Ẽn = T ·En, thereby showing that
the eigenvalues of Me are invariant under the transform T. Similarly, the four eigenvalues of the matrix K are equal
to the eigenvalues of the transformed matrix K̃ = T ·K ·T−1. Consider a transform T to fully decoupled coordinates
˜δR where M̃e(s|si) is diagonal. Then from Eq. (F8) K̃ is also diagonal. In this representation, the diagonal elements

of both M̃e(si +Lp|si) and K̃ are their respective eigenvalues. The eigenvalues of K can be calculated using Eq. (F1)
as ±iσ+/Lp and ±iσ−/Lp. Therefore,

K̃ = T ·K · T−1 =



−iσ+ 0 0 0

0 iσ+ 0 0
0 0 −iσ− 0
0 0 0 iσ−


 ,

and Eq. (F8) gives

M̃e(s|si) =




exp(iσ+
s−si
Lp

) 0 0 0

0 exp(−iσ+
s−si
Lp

) 0 0

0 0 exp(iσ−
s−si
Lp

) 0

0 0 0 exp(−iσ− s−si
Lp

)


 . (F10)

Form Eq. (F10) the eigenvalues of Me(si + Lp|si) are identified as λn = e±iσ+ , e±iσ− . To complete the analysis, the

fully decoupled solution for ˜δR(s) given by Eqs. (F7) and Eq. (F10) is connected to the untransformed coordinates

δR = (δrx, δr
′
x, δry, δr

′
y) by ˜δR = T · δR through the transformation

T = 1
2




−iσ+

Lp
−1 −iσ+

Lp
−1

−iσ+

Lp
1 −iσ+

Lp
1

−iσ−

Lp
−1 iσ−

Lp
1

−iσ−

Lp
1 iσ−

Lp
−1


 ,

T−1 = 1
2




i
Lp
σ+

i
Lp
σ+

i
Lp
σ−

i
Lp
σ−

−1 1 −1 1

i
Lp
σ+

i
Lp
σ+

−i Lpσ−
−i Lpσ−

−1 1 1 −1


 .

(F11)
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It is instructive to examine the connection of this matrix transformation approach to the decoupled sum and
difference coordinates δr± = (δrx±δry)/2 employed in Sec. III. Taking ˜δR = (δr+, δr

′
+, δr−, δr

′
−) = T·δR corresponds

to the linear transformation

T = 1
2T

−1 = 1
2



1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 . (F12)

Under this transformation, K̃ is block diagonal with

K̃ = T · K ·T−1 =




0 −1 0 0
σ2
+

L2
p

0 0 0

0 0 0 −1

0 1
σ2
−

L2
p

0



.

The corresponding transfer map M̃e(s|si) = exp[−K̃(s− si)] can be directly calculated using the series definitions of
the matrix exponential, recognizing the recursion among terms, and summing resulting series to give

M̃e(s|si) =




cos(σ+
s−si
Lp

)
Lp
σ+

sin(σ+
s−si
Lp

) 0 0

−σ+

Lp
sin(σ+

s−si
Lp

) cos(σ+
s−si
Lp

) 0 0

0 0 cos(σ−
s−si
Lp

)
Lp
σ−

sin(σ−
s−si
Lp

)

0 0 −σ−

Lp
sin(σ−

s−si
Lp

) cos(σ−
s−si
Lp

)


 . (F13)

The block diagonal form of Eq. (F13) corresponds to rotations in the decoupled r+−r′+ and r−−r′− phase-spaces. This
solution also follows immediately from Eq. (65). Finally, it is instructive to point out that the transformation to fully
decoupled coordinates presented in Eq. (F11) can be derived in terms of two successive linear transformations, first
a transformation to decoupled δr± coordinates as given by Eq. (F12) and then a transformation from trigonometric
forms {i.e., cos[σ±(s− si)/Lp]} to exponential forms [i.e., eiσ±(s−si)/Lp ].

APPENDIX G: THIN-LENS ANALYSIS OF NORMAL ENVELOPE MODES IN PERIODIC
SOLENOIDAL AND FODO QUADRUPOLE FOCUSING CHANNELS AT ZERO AND FULL

SPACE-CHARGE DEPRESSION

Normal envelope modes of thin-lens (η → 0 with σ0 fixed) solenoidal and FODO (α = 1/2) quadrupole focusing
channels can be analyzed analytically in the limit of zero (σ → σ0) and full (σ → 0) space-charge depression[38]. In
the zero space-charge limit, the x- and y-envelope coordinates decouple and the general analysis in II F applies to show
that all envelope modes have phase advance 2σ0. As a consequence of this phase advance limit and the decoupling,
instabilities are possible only for σ0 = 90◦ and 180◦. A straightforward transfer matrix analysis of single-particle
orbits can then be used to show that there is no envelope instability for σ0 = 90◦, and there is linear growth in
oscillation amplitude with lattice periods traversed for σ0 = 180◦.

To analyze the opposite limit of full space-charge depression, we proceed as follows. Let L be the length of the
free-drift interval between the two subsequent thin-lenses, solenoids or quadrupoles (Lp = L for solenoids and Lp = 2L
for quadrupoles) as illustrated in Fig. 24. By symmetry we only need to consider the envelope evolution of the beam
between two lenses only. We take the first lens to be at axial location s = −L/2 and the second one to be at s = L/2.

The envelope equations (4) for the case of a fully depressed beam (with σ = 0), which corresponds to zero beam
emittance (εx = εy = 0), can be written in terms of scaled sum and difference coordinates R± = (rx ± ry)/(2

√
2Q)

as:

2R′′
+(s) + 2κx(s)R+(s) − 1

R+(s)
= 0,

2R′′
−(s) + 2κx(s)R−(s) = 0

(G1a)

for solenoidal focusing, and

2R′′
+(s) + 2κx(s)R−(s) − 1

R+(s)
= 0,

2R′′
−(s) + 2κx(s)R+(s) = 0

(G1b)
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a) Thin-Lens Solenoids

b) Thin-Lens FODO Quadrupoles

c) Thin-Lens FODO Quadrupoles
(symmetrized)

L/ 20 L-L/ 2 3L/ 2

L/ 20 L-L/ 2 3L/ 2

L/ 20 L-L/ 2 3L/ 2

R+(s)

R+(s)

R+(s)

R-(s)

R-(s)

ζ(s)R-(s)
0

0

0

s

s

s

FIG. 24: Matched beam envelopes R±(s) and transport lattice for (a) solenoid and (b) FODO quadrupole thin-lens transport
channels. In (c), ζ(s)R−(s) is plotted for the quadrupole channel.

for quadrupole focusing. Here, we have employed κx = κy for solenoidal focusing and κx = −κy for quadrupole
focusing. For the solenoidal channel all thin-lens focusing kicks are focusing in x. Without loss of generality, we
assume that in the alternating gradient channel that the lens at s = L/2 is focusing in x. Then for both thin-lens
solenoids and quadrupoles we take near s = L/2 [see Eq. (13)]

κx(s) = 1
f δ
(
s− L

2

)
, (G2)

where f = const is the thin-lens focal length and δ(s) is the Dirac delta-function. The focal length f can be related
to the undepressed particle phase advance over one lattice period σ0 as [see Eq. (30)]

L
f =

{
2 − 2 cosσ0, solenoidal focusing,√

2 − 2 cosσ0, quadrupole focusing.
(G3)

To analyze the envelope stability of the fully space-charge depressed beam in solenoidal and quadrupole focusing
channels we examine the change in the envelope coordinate vector R(s) = (R+(s), R′

+(s), ζ(s)R−(s), ζ(s)R′
−(s)) from

the mid-drift at s = 0 to the next mid-drift at s = L. Here, ζ(s) = 1 when the next lens to be traversed is focusing, and
ζ(s) = −1 when the next lens is defocusing. For solenoidal focusing ζ(s) = 1, and for alternating gradient quadrupole
focusing ζ(s) = −1 for 0 ≤ s ≤ L/2 and ζ(s) = 1 for L/2 < s ≤ L. The effect of ζ(s) is to map the matched beam
envelope R− in the second drift region of the quadrupole (L/2 < s ≤ L) into the first drift region (0 ≤ s < L/2) [see
Fig. 24(c)]. This mapping expedites the use of symmetry in the matched envelope to simplify calculations for the
FODO lattice.

To analyze the first-order perturbations in the coordinate vector R(s) we compute the Jacobian matrix M(0, L)
where M(s1|s2) = ∂R(s2)/∂R(s1) and derivatives are evaluated for a matched beam envelope. The Jacobian matrix
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M(0|L) is identical to the symplectic transfer map in Eq. (46). Analogously to the treatment in Sec. II F, the
stability of the envelope to linear perturbations about the matched envelope solution corresponds to M(0|L) having
all eigenvalues on the complex unit circle. To characterize mode properties, eigenvalues will be calculated in terms of
σ0.

In calculating M(0|L), we henceforth denote F(s± 0) ≡ limδ→±0 F(s+ δ) to represent the discontinuous action of
the thin-lenses on the beam envelope functions. To exploit lattice symmetries, we split the interval (0, L) into three
parts (0, L2 − 0), (L2 − 0, L2 + 0) and (L2 + 0, L), and calculate M(0, L) as

M(0|L) = M(L2 + 0|L)M(L2 − 0|L2 + 0)M(0|L2 − 0).

By symmetry, M(L2 + 0|L) = M(0| − L
2 + 0)−1 and so this can be expressed as

M(0|L) = Mf (−L
2 + 0)−1MsMf (

L
2 − 0), (G4)

where Ms = M(L2 − 0|L2 + 0) is the “singular Jacobian” associated with the thin-lens focusing kick, and Mf (s) =
M(0|s) for |s| < L/2 is the “free-drift Jacobian” associated with the half-drift.

To evaluate Ms, we consider the action of the thin-lens according to Eq. (14). We obtain for the solenoidal channel

Ms =




1 0 0 0
− 1
f 1 0 0

0 0 1 0
0 0 − 1

f 1


 , (G5a)

and for the quadrupole channel keeping in mind that the ζ(s)R− changes sign from one free-drift region to the next,

Ms =




1 0 0 0
0 1 − 1

f 0

0 0 −1 0
1
f 0 0 −1


 . (G5b)

Using Eq. (G3), the elements of Ms can be expressed in terms of σ0 and L.
To evaluate elements of Mf (s), the space-charge dominated free-expansion solutions in Eqs. (18) and the Hamil-

tonian constraint in Eq. (C1) are employed. These equations, valid within the drift regions, can be expressed in the
scaled R± coordinates as

ln
R+(s)

R+(0)
= −R′2

+(0) +

{
erfi(−1)

[
erfiR′

+(0) + eR
′2
+ (0) s√

πR+(0)

]}2

, (G6a)

R−(s) = R−(0) +R′
−(0)s, (G6b)

R′2
+(s) − lnR+(s) = const. (G6c)

Here, R±(0) and R′
±(0) are the values of R±(s) and R′

±(s) at s = 0. Eqs. (G6a) and (G6b) for R±(s) satisfy
Eqs. (G1a) and (G1b) in the free-drift region |s| < L/2 where κx(s) = 0. Employing Eq. (G6a) and R′

+(0) = 0, which
follows from the matched beam symmetry R+(s) = R+(−s), yields

Mf (s) =




R+(s)−sR′
+(s)

R+(0) 2R+(0)R′
+(s) 0 0

− s
2R+(0)R+(s)

R+(0)
R+(s) 0 0

0 0 1 s
0 0 0 1


 . (G7)

To complete the evaluation of Mf (L/2 − 0), we find relations of the elements to σ0 and L by deriving equations
connecting R+(L/2− 0) ≡ R+(L/2), R′

+(L/2− 0), and R+(0) to these quantities for the matched beam envelope. By
symmetry, for a periodic matched envelope

R′
+

(
L
2 − 0

)
= −R′

+

(
L
2 + 0

)
,

R′
−

(
L
2 − 0

)
= −R′

−

(
L
2 + 0

)
.

(G8)
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For solenoids, Eqs. (G1a) and (G2) can be integrated once about s = L/2 to show that

R′
+(L2 + 0) = R′

+(L2 − 0) − 1
fR+(L2 ),

R′
−(L2 + 0) = R′

−(L2 − 0) − 1
fR−(L2 ).

Combining these constraints with the matching conditions (G8), we get

R′
+(L2 − 0) = 1

2fR+(L2 ),

R′
−(L2 − 0) = 1

2fR−(L2 ).
(G9a)

Similarly, using Eqs. (G1b) and (G2) for alternating gradient focusing and matched beam symmetries (G8), we obtain

R′
+(L2 − 0) = 1

2fR−(L2 ),

R′
−(L2 − 0) = 1

2fR+(L2 ).
(G9b)

For quadrupole focusing, Eqs. (G9b) and (14) can be combined to yield an additional constraint

R′
+(L2 − 0) = L

8f2R+(L2 ). (G9c)

Both the solenoidal and quadrupole matching conditions in Eqs. (G9) for R+ can be expressed as

R′
+(L2 − 0) = k̂

LR+(L2 ), (G10)

where

k̂ =

{
L
2f = 1 − cosσ0, solenoidal focusing,
L2

8f2 = 1
4 (1 − cosσ0), quadrupole focusing.

Applying the constant, drift region envelope Hamiltonian in Eq. (G6c) between s = 0 and s = L/2 − 0 and taking
R′

+(0) = 0 consistent with a matched beam equilibrium in the resulting expression leads to the constraint

R+(L2 ) = R+(0)e
R′2

+

(
L
2 −0

)
. (G11)

Then evaluating the free-drift expansion formula (G6a) at s = L/2 with R′
+(0) = 0 and using Eq. (G11) to simplify

the result yields

L
R+(0) = 2

√
π erfiR′

+(L2 − 0). (G12)

Equations (G10)–(G12) produce a relation between σ0 and R′
+

(
L
2 − 0

)
:

k̂ = 2
√
πe

−R′2
+

(
L
2 −0

)
R′

+(L2 − 0) erfiR′
+(L2 − 0). (G13)

Equations (G10)–(G13) provide the needed constraints to relate the elements of Mf (L/2 − 0) to σ0 and L. Needed
elements of Mf (−L/2+ 0) can be calculated from these constraints using the matched beam symmetry requirements

R+(−L
2 ) = R+(L2 ),

R′
+(−L

2 + 0) = −R′
+(L2 − 0).

(G14)

Henceforth, to abbreviate formulas, we denote R′
+(L/2− 0) ≡ R′

+(L/2) and R′
+(−L/2 + 0) ≡ R′

+(−L/2).
For solenoidal focusing R± are uncoupled, and M(0|L) is of block diagonal form with [see Eq. (50)]

M(0|L) =

[
M+(0|L) 0

0 M−(0|L)

]
,

where M±(0|L) are 2 × 2 symplectic matrices that can be independently analyzed for the stability of perturbations
in R+ (breathing mode) and R− (quadrupole mode). Mode phase advances (σ±) and growth factors (γ±) can be
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calculated from the eigenvalues λ± of M±(0|L). Stable modes with λ± on the complex unit circle correspond to
(1/2) |TrM±(0|L)| < 1 [see Eq. (52)]. The matrices M±(0|L) can be evaluated from Eqs. (G4) using Eqs. (G5a) and
(G7). Resulting expressions are simplified with the constraints in Eqs. (G10)–(G12) to show that

M+(0|L) =



R+(−L

2 )+L
2 R

′
+(−L

2 )
R+(0) 2R+(0)R′

+

(
−L

2

)
L
2

2R+(0)R+(−L
2 )

R+(0)

R+(−L
2 )



−1 
 1 0
− 1
f 1





R+(L2 )−L

2 R
′
+(L2 )

R+(0) 2R+(0)R′
+

(
L
2

)

−
L
2

2R+(0)R+(L2 )
R+(0)

R+(L2 )




=

[
cosσ0 − 4R′2

+(L2 ) cos2(σ0

2 ) 2
R2

+(0)

f [1 − 2R′2
+(L2 )]

−f
R2

+(0)
cos2(σ0

2 )[1 − cosσ0 + 4R′2
+(L2 ) cos2(σ0

2 )] cosσ0 − 4 cos2(σ0

2 )R′2
+(L2 )

]
,

M−(0|L) =

[
1 −L

2
0 1

]−1 [
1 0
− 1
f 1

][
1 L

2
0 1

]
=

[
cosσ0

L
2 (1 + cosσ0)

− 2
L(1 − cosσ0) cosσ0

]
.

(G15)

Eigenvalues λ± of the matrices M±(0|L) are calculated from Eq. (G15) as

λ+ = cosσ0 − 4R′2
+(L2 ) cos2(σ0

2 ) ± 2i cos(σ0

2 )
√[

1 − 2R′2
+

(
L
2

)] [
sin2(σ0

2 ) + 2R′2
+(L2 ) cos2(σ0

2 )
]
,

λ− = cosσ0 ± i sinσ0.
(G16)

From these eigenvalues, we calculate mode phase advances

σ+ = argλ+ with + sign in Eq. (G16),

σ− = σ0,
(G17)

and growth factors

γ+ =

{
1, in stable regions,√

2
[
cosσ0 − 4R′2

+(L2 ) cos2(σ0

2 )
]2 − 1, in unstable region,

γ− = 1.

(G18)

These solutions for σ± and γ± are plotted in Fig. 25 as a function of σ0 using the constraint equation (G13) to

numerically eliminate R′
+(L/2) in terms of σ0. Continuous focusing results σ+ =

√
2σ0 and σ− = σ0 [see Eq. (64)

with σ = 0] are superimposed on the phase advance plot for branch comparison. The extent of the band of instability
(γ+ 6= 1) in σ0 can be calculated from γ+ directly or by examining where the stability condition [see Eq. (52)]

1
2 |TrM+(0|L)| = cosσ0 − 4R′2

+(L2 ) cos2(σ0

2 ) < 1

is violated. This occurs where R′2
+(L/2) > 1/2 and σ0 < π. Using Eqs. (G10)–(G13) we conclude that the instability

band for solenoidal focusing is located on the interval

σ0 ∈
[
arccos

(
1 −

√
2π

e
erfi

1√
2

)
, π

]
≈ [116.715◦, 180◦]. (G19)

Here, we have denoted the boundary points of the interval to be unstable based on an analysis of the matrices M±(0|L)
which shows that there is linear growth in R+ when R′2

+(L/2) = 1/2, and linear growth in R− when σ0 = π.
The stability of quadrupole focusing can be investigated analogously to the case of solenoidal focusing except that

we must work with the full 4× 4 Jacobian matrix M(0|L) because R± are coupled in this case. After multiplying out
the matrices in Eq. (G4) and employing Eqs. (G9c) and (G14), we obtain

M(0|L) =




1 − L2

8f2
L

2f2R
2
+(0) − L

4f3R+(0)R+

(
L
2

)
− L2

8f2R+(0)R+

(
L
2

)

L(L2/f2−16)
32R+(0) 1 − L2

8f2

(L2/f2−16)R+(L2 )
16fR+(0)

L(L2/f2−16)R+(L2 )
32fR+(0)

−L(L2/f2−16)R+(L2 )
32fR+(0)

L2

8f3R+(0)R+

(
L
2

)
−1 −L

−(L2/f2−16)R+(L2 )
16fR+(0)

L
4f3R+(0)R+

(
L
2

)
0 −1



. (G20)

The four eigenvalues λ of M(0|L) are calculated from Eq. (G20) and then simplified using the constraints in Eqs. (G10)–
(G13). We obtain:

λ = w − 1
4 sin2(σ0

2 ) ± i
√

1
2w sin2(σ0

2 ) + 1
2

[
1 − 1

4 sin2(σ0

2 )
] [

sin2(σ0

2 ) + 16R′2
+(L2 )

]
, (G21)
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FIG. 25: Phase advance (σ±) and growth factors (γ±) for the breathing and quadrupole modes versus σ0 for a thin-lens
solenoidal focusing channel and a fully depressed beam with σ = 0. Continuous focusing model predictions for σ± are indicated
with dashed lines.

where

w = ±
√[

1 − 1
4 sin2(σ0

2 )
] [

1 − 1
4 sin2(σ0

2 ) − 8R′2
+

(
L
2

)]
.

These eigenvalues can be employed to calculate phase advances (σB and σQ) and growth factors (γB and γQ) of the
breathing and quadrupole modes as σB,Q = 2 argλ and γB,Q =

∣∣λ2
∣∣. Here, the factors of two stem from M(0|L)

being a half-period advance in a symmetric FODO lattice with period 2L. The physical branches of λ selected
according to the prescriptions given in Sec. II F correspond to Taylor series σB =

√
2σ0(1 + 1

768σ
4
0 + 211

967680σ
6
0 + · · · )

and σQ = σ0(1 + 1
96σ

2
0 + 203

92160σ
4
0 + · · · ). These solutions are plotted in Fig. 26 as a function of σ0 using the constraint

equation (G13) to numerically eliminate R′
+(L/2) in terms of σ0 . Using Eqs. (G13) and Eq. (G21) we find numerically

that the instability band is located on the interval

σ0 ∈ (121.055◦, 180◦) . (G22)
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